Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Background prior-based salient object detection via deep reconstruction residual

Han, Junwei and Zhang, Dingwen and Hu, Xintao and Guo, Lei and Ren, Jinchang and Wu, Feng (2015) Background prior-based salient object detection via deep reconstruction residual. IEEE Transactions on Circuits and Systems for Video Technology, 25 (8). pp. 1309-1321. ISSN 1051-8215

Text (Han-etal-IEEE-TOCASFVT-2015-Background-prior-based-salient-object-detection-via-deep)
Han_etal_IEEE_TOCASFVT_2015_Background_prior_based_salient_object_detection_via_deep.pdf - Accepted Author Manuscript

Download (10MB) | Preview


Detection of salient objects from images is gaining increasing research interest in recent years as it can substantially facilitate a wide range of content-based multimedia applications. Based on the assumption that foreground salient regions are distinctive within a certain context, most conventional approaches rely on a number of hand designed features and their distinctiveness measured using local or global contrast. Although these approaches have shown effective in dealing with simple images, their limited capability may cause difficulties when dealing with more complicated images. This paper proposes a novel framework for saliency detection by first modeling the background and then separating salient objects from the background. We develop stacked denoising autoencoders with deep learning architectures to model the background where latent patterns are explored and more powerful representations of data are learnt in an unsupervised and bottom up manner. Afterwards, we formulate the separation of salient objects from the background as a problem of measuring reconstruction residuals of deep autoencoders. Comprehensive evaluations on three benchmark datasets and comparisons with 9 state-of-the-art algorithms demonstrate the superiority of the proposed work.