Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning

Han, Junwei and Zhang, Dingwen and Cheng, Gong and Guo, Lei and Ren, Jinchang (2015) Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Transactions on Geoscience and Remote Sensing, 53 (6). pp. 3325-3337. ISSN 0196-2892

Text (Han-etal-IEEE-TGRS-2015-Object-detection-in-optical-remote-sensing-images-based-weakly)
Han_etal_IEEE_TGRS_2015_Object_detection_in_optical_remote_sensing_images_based_weakly.pdf - Accepted Author Manuscript

Download (5MB) | Preview


The abundant spatial and contextual information provided by the advanced remote sensing technology has facilitated subsequent automatic interpretation of the optical remote sensing images (RSIs). In this paper, a novel and effective geospatial object detection framework is proposed by combining the weakly supervised learning (WSL) and high-level feature learning. First, deep Boltzmann machine is adopted to infer the spatial and structural information encoded in the low-level and middle-level features to effectively describe objects in optical RSIs. Then, a novel WSL approach is presented to object detection where the training sets require only binary labels indicating whether an image contains the target object or not. Based on the learnt high-level features, it jointly integrates saliency, intraclass compactness, and interclass separability in a Bayesian framework to initialize a set of training examples from weakly labeled images and start iterative learning of the object detector. A novel evaluation criterion is also developed to detect model drift and cease the iterative learning. Comprehensive experiments on three optical RSI data sets have demonstrated the efficacy of the proposed approach in benchmarking with several state-of-the-art supervised-learning-based object detection approaches.