Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Hierarchical and multi-featured fusion for effective gait recognition under variable scenarios

Chai, Yanmei and Ren, Jie and Zhao, Huimin and Li, Yang and Ren, Jinchang and Murray, Paul (2015) Hierarchical and multi-featured fusion for effective gait recognition under variable scenarios. Pattern Analysis and Applications. ISSN 1433-7541

[img]
Preview
Text (Chai-etal-PAA-2015-Hierarchical-and-multi-featured-fusion-for-effective-gait)
Chai_etal_PAA_2015_Hierarchical_and_multi_featured_fusion_for_effective_gait.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Human identification by gait analysis has attracted a great deal of interest in the computer vision and forensics communities as an unobtrusive technique that is capable of recognizing humans at range. In recent years, significant progress has been made, and a number of approaches capable of this task have been proposed and developed. Among them, approaches based on single source features are the most popular. However the recognition rate of these methods is often unsatisfactory due to the lack of information contained in single feature sources. Consequently, in this paper, a hierarchal and multi-featured fusion approach is proposed for effective gait recognition. In practice, using more features for fusion does not necessarily mean a better recognition rate and features should in fact be carefully selected such that they are complementary to each other. Here, complementary features are extracted in three groups: Dynamic Region Area; Extension and Space features; and 2D Stick Figure Model features. To balance the proportion of features used in fusion a hierarchical feature-level fusion method is proposed. Comprehensive results of applying the proposed techniques to three well-known datasets have demonstrated that our fusion based approach can improve the overall recognition rate when compared to a benchmark algorithm.