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Multi-Population Inflationary Differential Evolution
Algorithm with Adaptive Local Restart
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Abstract—In this paper a Multi-Population Inflationary Differ-
ential Evolution algorithm with Adaptive Local Restart is pre-
sented and extensively tested over more than fifty test functions
from the CEC 2005, CEC 2011 and CEC 2014 competitions.
The algorithm combines a multi-population adaptive Differen-
tial Evolution with local search and local and global restart
procedures. The proposed algorithm implements a simple but
effective mechanism to avoid multiple detections of the same
local minima. The novel mechanism allows the algorithm to
decide whether to start or not a local search. The local restart
of the population, which follows the local search, is, therefore,
automatically adapted.

Keywords—Global optimization, differential evolution, multi-
population algorithm, adaptive algorithm.

I. INTRODUCTION

D Ifferential Evolution (DE) is a population-based global
optimization technique over continuous spaces [1]. Exist-

ing literature indicates that DE exhibits very good performance
over a wide variety of optimization problems [2]. However,
although being a very efficient optimizer, its local search ability
has long been questioned, [3], and work has been done to
improve its local convergence by combining DE with local
optimization strategies. Furthermore, stagnation due to the
collapse of the population to a fixed point or to a level set
has been theoretically demonstrated [4][5]. In [4], Inflation-
ary Differential Evolution Algorithm (IDEA) was introduced.
IDEA is based on the hybridization of DE with the restarting
procedure of Monotonic Basin Hopping (MBH) [6]. IDEA
gives better results than a simple DE but its performance is
dependent upon the parameters controlling both the DE and
MBH heuristics [4]. In particular, the DE heuristic, for a given
population size, depends on two main control parameters, the
crossover probability CR, and the differential weight F, whose
best settings are problem dependent, [2], [7]. Different adaptive
mechanisms for adjusting the control parameters during the
search process can be found in the literature [8], [9], [10]. In
[11] the authors proposed an Adaptive Inflationary Differential
Evolution Algorithm (AIDEA) that uses a probabilistic kernel
based approach to automatically adapt the values of both
CR and F. In [12] a further improvement of AIDEA, the
Multi-Population Adaptive Inflationary Differential Evolution
Algorithm (MP-AIDEA), was introduced, which automatically
adapts the neighborhood of a local minimum, within which the
search is restarted.
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This paper presents a new implementation of MP-AIDEA,
the Multi-Population Adaptive Inflationary Differential Evo-
lution Algorithm with Adaptive Local Restart (MP-AIDEA-
ALR), in which the number of local restarts is adapted
and integrated with the restart neighborhood adaptation. In
order to assess the performance of MP-AIDEA-ALR, the
new algorithm was extensively tested over a great number of
test problem from the past competitions of the Congress on
Evolutionary Computation. The paper starts with a section that
introduces MP-AIDEA with Adaptive Local Restart. Then the
test cases and the obtained results are presented.

II. MULTI-POPULATION INFLATIONARY DIFFERENTIAL
EVOLUTION WITH ADAPTIVE LOCAL RESTART

The algorithm presented in this paper is a further extension
of MP-AIDEA, [12]. MP-AIDEA starts with the initialization
of multiple populations in the search space. For each popula-
tion, a DE process is run in which each individual is associated
to a different value of CR and F . During the evolution of the
populations from parents to children the values of CR and F
are automatically adapted [11]. The DE heuristics is iterated
until a population contracts below a given threshold, identified
by a contraction parameter ρ̄. When the contraction condition
is satisfied a local search is run from the best individual in
the population. The resulting local minimum is archived in
an archive of minima A, common to all the populations, and
the population is restarted in a bubble of dimension δlocal
around the local minimum (local restart). The parameter δlocal
is adapted by assessing the distance between minima found at
subsequent local restart. In theory, a local restart is effective
if a transition from one local minimum to a local minimum
with a better value of the objective function occurs. Therefore,
in this paper the dimension of the bubble is deemed to be
appropriate, if the populations move from a set of local minima
to another set with better local minima. Local restart is iterated
up to a predefined maximum number of times, identified by
the value nLR. When this value is reached the population is
restarted globally, rather than locally, at a distance δglobal from
the cluster of local minima found thus far (global restart).
The algorithm stops when the maximum number of function
evaluation is reached. In the new implementation of MP-
AIDEA the parameter nLR is replaced with a mechanism that
detects when the population contracts in the basin of attraction
of a local minimum which has already been identified. The
whole MP-AIDEA with Adaptive Local Restart is described
in Algorithm 1. The first step of the optimization process is the
initialization of Np populations, composed of np individuals,
in the search space (Alg. 1, line 1-3). Then, a joint PDF
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over the values of CR and F , CRF, is initialized with a
uniform distribution (Alg. 1, line 5-8). The values of CR
and F for each individual of each population are drawn
from CRF. Each population evolves, independently of the
others, by implementing the DE heuristics: the mutant vectors
are generated from existing population members by applying
either the DE/rand or the DE/current-to-best strategy [13]. The
probability of applying one strategy or another is set to 0.5.
During the advancement from parents to offspring, CR and
F are adapted in each population according to the Algorithm
developed in [11].

Algorithm 1: MP-AIDEA-ALR
1: Set values for npop, Npop, ρ̄, δglobal,q = 1
2: Set nfeval,m = 0 and km = 1 (generation number) for

each populations m ∈ [1, . . . , Npop]
3: Initialize population Pm,km with individuals xm,i,km

∀m ∈ [1, . . . , Npop] and ∀i ∈ [1, . . . , npop]
4: Compute ∆ = ∥xupper−xlower∥ where xlower and xupper

are the lower and upper boundaries of the search space
5: A regular mesh CRF with (nD + 1)2 points (nD is

the dimensionality of the problem) in the space CR ∈
[0.1, 0.99]× F ∈ [−0.5, 1] is created

6: Initialize CRF with points of the mesh: CRFj,1 ← CRj

and CRFj,2 ← Fj for all j ∈ [1, . . . , (nD + 1)2]
7: Associate to each row of CRF an element ddj = 0 for

all j ∈ [1, . . . , (nD + 1)2]
8: for m ∈ [1, . . . , Npop] do
9: Sample CRm,km and Fm,km from a bi-variate distribu-

tion on the two dimensional lattice defined by the rows
of CRF

10: for i ∈ [1, . . . , npop] do
11: xm,i,km+1 ← DE(xm,i,km , CRm,km , Fm,km )
12: nfeval,m = nfeval,m + 1
13: Update CRF (see Ref.[11])
14: end for
15: km = km + 1
16: Row sort CRF in terms of dd values
17: Compute ρm = max(||xm,i,km − xm,j,km ||)

∀xm,i,km
,xm,j,km

∈ Pm,km

18: Until ρm ≤ ρ̄ · ρmax,m goto (9)
19: end for
20: for m ∈ [1, . . . , Npop] do
21: xbest,m = argminxi,m∈Pmf(xi,m)
22: if A = ∅ then
23: inside = 0
24: else
25: for j ∈ [1, . . . , nLM ] where nLM is the number of

minima xLM in A do
26: Compute dj = ∥xbest,m − xLM,j∥
27: if dj < dbasin,j and NLMDet,j ≥ 4 then
28: inside = 1
29: break
30: else
31: inside = 0
32: end if
33: end for
34: end if

35: if inside = 0 then
36: L.S.: Run local optimizer from xbest,m and let xmin

be the resulting local minimum
37: if A = ∅ then
38: detected = 0
39: else
40: detected = 0
41: for j ∈ [1, . . . , nLM ] do
42: Compute dmin = ∥xmin − xLM,j∥
43: if dmin ≤ ϵ∆ then
44: xmin ← xLM,j

45: dbasin,j = min (dbasin,j , ∥xbest,m − xmin∥)
46: NLMDet,j = NLMDet,j + 1
47: detected = 1
48: break
49: end if
50: end for
51: end if
52: if detected = 0 then
53: xLM,j+1 = xmin, A = A ∪ {xLM,j+1}
54: dbasin,j+1 = ∥xbest,m − xLM,j+1∥ is added to

the archive of basin dimensions associated to the
elements in A: Dbasin = Dbasin ∪ {dbasin,j+1}

55: NLMDet,j+1 = 1
56: end if
57: LRm = 1
58: else
59: LRm = 0
60: end if
61: end for
62: if All populations did local search L.S. (line 35) for the

1st time or all populations did global restart G.R. (line 75)
then

63: Create vector B with Algorithm 3
64: end if
65: if (All populations did local search L.S. more than once)

then
66: Update B (see Algorithm 3)
67: end if
68: q = q + 1, km = 1 ∀m
69: for m ∈ [1, . . . , Npop] do
70: if LRm = 1 then
71: Sample δlocal,m from B to define the bubble Dm

72: L.R.: Initialize population xm,i,km for all i ∈
[1, . . . , npop] in the bubble Dm

73: else
74: Define clusters in the archive and compute baricentre

xc,m of each cluster
75: G.R.: Initialize population xm,i,km

for all i ∈
[1, . . . , npop] such that ∀i, j||xm,i,km − xm,j,km || >
δglobal

76: end if
77: end for
78: Termination If sum (nfeval,m) ≥ nfeval,max goto (5)
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A. Adaptive Local Restart
In MP-AIDEA, when a population contracts below a thresh-

old ρ̄ρmax,m (Alg. 1, line 18), a local optimizer is run from
the best individual in the population, xbest, and the resulting
local minimum, xLM , is saved in an archive of local minima,
A, common to all the populations. The population m is
then restarted in a hypercube with edge 2δlocal,m around
the detected local minimum xLM . The dimension δlocal,m is
drawn from a probability distribution defined by the vector B.
The procedure to initialize B is described in Algorithm 2 and
is analogous to the one used to generate CRF: the distance
between all the local minima in the archive A is computed
and the vector B is initialize with values spanning the interval
between the min and the mean distance among minima (Alg.
2, line 1).

Algorithm 2: Generation of B for the adaptation of δlocal
1: Compute mean and minimum distance between all local

minima in A: dminMIN and dminMEAN

2: Create 1-dimensional regular grid with (nD + 1)2 points
in the interval [dminMIN ,dminMEAN ]

3: Initialize B with points of the mesh
4: Associate to B a vector ddb with element ddb,j = 0 for

all j ∈ [1, . . . , (nD + 1)2]

Algorithm 3: Updating procedure for B
1: for m ∈ [1, . . . , Npop] do
2: pm = ||xLM,m,q − xLM,best||
3: for j ∈ [1, . . . , (nD + 1)2] do
4: if ddbj < pm ∧ f(xLM,m,q) ≤ f(xLM,best) then
5: Bj,q ← δlocal,m
6: ddb,j,q ← pm
7: end if
8: end for
9: end for

10: Row sort B according to ddb values

The updating procedure for B, detailed in Algorithm 3, follows
the same approach used for updating CRF in [11]: the dis-
tance pm between the local minimum identified by population
m at iteration q, xLM,m,q , and the best local minimum in A,
xLM,best, is used to update B if f(xLM,m,q) ≤ f(xLM,best).
In MP-AIDEA the local restart following the local search was
iterated up to a user-defined number of times nLR. The novelty
in MP-AIDEA-ALR is that the parameter nLR is removed and
replaced by a procedure that locally restart the optimization
until no new local minimum is found. The idea is that the local
restart should enable a transition from the current minimum
to a neighboring minimum that falls within the local restart
bubble δlocal,m. If the transition repeatedly leads to the same
local minima, the local restart procedure is deemed to be not
effective and a global restart becomes necessary. Given a local
minimum xLM,j , one can define the basin of attraction of
xLM,j for the local search operator LS (x) as:

BA (xLM,j)j = {x : LS (x) = xLM,j} (1)

If BAj is included in the restart bubble a transition can occur

to a new basin of attraction and a new local minimum is saved
in A. However, if the restart bubble includes multiple basins
of attraction, then a local restart might lead to converging to a
local minimum already recorded in the archive A. Furthermore,
it is desirable to avoid having the local search operator applied
to multiple points belonging to the basin of attraction of the
same local minimum xLM,j . In order to avoid rediscovering
the same local minima, when the local search operator is
applied to xbest, the distance dbasin,j between xbest and the
local minimum xLM,j , xbest converged to, is recorded and the
number of times NLMDet,j convergence to local minimum j
is achieved is increased by 1. If the same local minimum is
revisited more than four times, the local restart procedure is
stopped and the global restart is activated. Likewise if xbest

falls at a distance from local minimum j that is lower than
dbasin,j , the local restart procedure is replaced by the global
restart. If different xbest converge to the same local minimum,
dbasin,j is the minimum distance of all the xbest from xLM,j .

III. CASE STUDIES

The effectiveness of the new MP-AIDEA-ALR was tested
on some of the functions taken from three past competitions of
the Congress on Evolutionary Computation (CEC): CEC 2005
[15], CEC 2011 [16] and CEC 2014 [17]. MP-AIDEA-ALR
was compared against those algorithms, competing in each of
the CEC competitions, that reported their best result in a paper.
The ranking method used to assess the performance of MP-
AIDEA-ALR follows the rules of the CEC 2011 Competition,
[18]. All algorithms are ranked on the basis of the best
and mean values of the objective function criteria according
to the following criteria: for each function, algorithms are
ranked according to the obtained best objective value; for each
function, algorithms are ranked according to the obtained mean
objective value; the ranking for the best and mean objective
values of a particular algorithm are added up over all the
problems to get the absolute ranking. For MP-AIDEA-ALR
the number of populations is Npop = 4 and the number of
individuals in each population is npop = nD, where nD is the
dimensionality of the problem. The non-adapted parameter of
MP-AIDEA-ALR are set to ρ̄ = 0.2 and δglobal = 0.1.

A. CEC 2005 Competition
The functions of the CEC 2005 competition were tested at

dimension nD = 10, 30 and 50, with a maximum number
of functions evaluation equal to nfeval,max = 10000nD and
considering 25 independent runs for each function, [15]. All
the functions but the noisy ones (functions 4, 17, 24 and 25)
were used in this test. The obtained results are reported in
Table I, which shows that, for all the considered dimensions,
MP-AIDEA-ALR is ranked first. Table II reports the best
objective function error values obtained by all the algorithms
for functions 13 and 16 at 10 dimensions. According to the
CEC 2005 specifications, the accuracy level for the detection
of the global minimum is 10−2 for these functions. Note that
MP-AIDEA-ALR is able to identify the global minimum of
both functions 13 and 16. Previously only EvLib succeeded in
identifying the global minimum of function 13 and no other
algorithm managed to find the global minimum of function 16.
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TABLE I: CEC 2005 Ranking.

nD = 10 nD = 30 nD = 50
1 MP-AIDEA-ALR MP-AIDEA-ALR MP-AIDEA-ALR
2 G-CMA-ES [19] G-CMA-ES G-CMA-ES
3 L-SaDE [20] L-CMA-ES L-CMA-ES
4 DMS-L-PSO [21] K-PCX flexGA
5 L-CMA-ES [22] BLX-GL50
6 BLX-GL50 [23] SPC-PNX
7 DE (Ronkonnen) [24] DE (Ronkonnen)
8 SPC-PNX [25] DE (Bui)
9 EvLiv [26] flexGA
10 EDA [27] CoEVO
11 K-PCX [28] EDA
12 BLX-MA [29]
13 DE (Bui) [30]
14 CoEVO [31]
15 flexGA [32]
16 ES [33]

TABLE II: CEC 2005 Best Objective Function Error Values
for Functions 13 and 16, nD = 10.

Algorithm Function 13 Function 16
BLX-GL50 3.70e-01 7.20e+01
BLX-MA 3.80e-01 9.00e+01
CoEVO 4.70e-01 1.20e+02

DE (Ronkonnen) 4.60e-01 1.50e+02
DE (Bui) 2.70e-01 1.00e+02

DMS-L-PSO 2.50e-01 5.20e+01
EDA 1.60e+00 1.30e+02
ES 7.90e-01 9.70e+01

EvLiv 9.90e-03 1.20e+02
flexGA 4.20e-02 1.10e+02

G-CMA-ES 4.10e-01 7.90e+01
K-PCX 3.30e-01 8.80e+01

L-CMA-ES 1.90e-01 6.10e+01
L-SaDE 1.20e-01 8.60e+01

SPC-PNX 3.50e-01 9.10e+01
MP-AIDEA-ALR 9.87e-03 0.00e+00

B. CEC 2011 Competition
For the CEC 2011 competition the functions were tested

using nfeval,max = 150000 function evaluations and consid-
ering 25 runs per function, [16]. All problems but functions 4,
8, 9 and 11 were used in this test (functions 8, 9 and 11 are
characterized by equality and inequality constraints). For this
competition only, the number of individuals in each population
was set to npop = 30 regardless of the dimensionality of the
problem. The obtained results are reported in Table III. MP-
AIDEA-ALR is ranked in first place if problem 13 (the Cassini
2 Spacecraft Trajectory Optimization Problem) is excluded
from the ranking. Figure 1 shows the typical convergence
profile of MP-AIDEA-ALR and GA-MPC, the best algorithm
of the competition, on function 13 for a number of function
evaluations greater than the limit prescribed by the CEC 2011
competition. It has to be noted that GA-MPC converges very
rapidly to a local minimum but then seems to stagnate. On the
contrary, MP-AIDEA-ALR has a slower convergence for the
first 200000 function evaluations but then progressively finds
better minima as the number of function evaluations increases.

C. CEC 2014 Competition
For the CEC 2014 competition the functions were tested

at dimensions nD = 10, 30, 50 and 100, with maximum

TABLE III: CEC 2011 Ranking.

With Function 13 Without Function 13
1 GA-MPC [34] MP-AIDEA-ALR
2 MP-AIDEA-ALR GA-MPC
3 SAMODE [35] SAMODE
4 WI-DE [36] WI-DE
5 EA-DE-MA [37] EA-DE-MA
6 Adap. DE 171 [38] Adap. DE 171
7 DE-Λ [39] DE-Λ
8 ED-DE [40] ED-DE
9 Mod-DE-LS [41] Mod-DE-Ls

10 RGA [42] RGA
11 DE-RHC [43] DE-RHC
12 mSBX-GA [44] mSBX-GA
13 ENSML-DE [45] ENSML-DE
14 CDASA [46] CDASA
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Fig. 1: F12: Cassini Optimization Problem

number of function evaluations nfeval,max = 10000nD and 51
repeated runs per function [17]. Non-differentiable functions
6, 12, 19, 22, 26, 27, 29 and 30 were not included in this test.
Results are reported in Table IV.

TABLE IV: CEC 2014 Ranking.

nD = 10 nD = 30 nD = 50 nD = 100
1 UMOEAs [47] L-SHADE UMOEAs UMOEAs
2 MP-A.-ALR UMOEAs MP-A.-ALR L-SHADE
3 L-SHADE [48] GaAPADE MVMO MP-A.-ALR
4 MVMO [49] MP-A.-ALR L-SHADE rmalshcma
5 DE-b6e6rl [50] CMLSP rmalshcma POBL-ADE
6 rmalschma [51] rmalshcma b3e3pbest b3e3pbest
7 GaAPADE [52] MVMO FERDE OptBees
8 FERDE [53] DE-b6e6rl DE-b6e6rl DE-b6e6rl
9 CMLSP [54] b3e3pbest RSDE RSDE

10 b3e3pbest [55] FERDE POBL-ADE FWA-DE
11 RSDE [56] RSDE OptBees
12 FWA-DE [57] FWA-DE FWA-DE
13 POBL-ADE [58] POBL-ADE SOO
14 OptBees [59] OptBees
15 SOO-BOBYQA [60] SOO-BOBYQA
16 FCDE [61] NRGA
17 NRGA [62] FCDE
18 SOO [60] SOO

Table V reports the best objective function values obtained
by all the algorithms for functions 9, 10, 11 and 15 in 10
dimensions. MP-AIDEA-ALR detects the global minimum of
function 11, unlike all the other competing algorithms, and
gives good results for the other functions.
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TABLE V: CEC 2014 Best Objective Function Error Values
for Functions 9, 10, 11 and 15, nD = 10.

Algorithm Func. 9 Func. 10 Func. 11 Func. 15
b3e3pbest 2.60e+00 0.00e+00 9.50e+01 5.70e-01
CMLSP 0.00e+00 2.50e-01 3.60e+00 4.50e-01

DE-b6e6rl 2.50e+00 0.00e+00 3.60e+01 4.90e-01
FCDE 8.00e+00 3.10e-01 1.40e+02 6.50e-01

FERDE 3.00e+00 0.00e+00 3.80e-01 3.50e-01
FWA-DM 2.00e+00 9.10e-13 4.00e+01 3.20e-01
GaAPADE 1.90e+00 2.40e-02 2.40e+00 3.80e-01
L-SHADE 2.20e-03 0.00e+00 3.90e-01 2.10e-01

MVMO 9.90e-01 6.20e-02 3.40e+00 2.10e-01
NRGA 9.90e-01 3.70e+00 1.90e+01 3.70e-01

OptBees 2.00e+00 3.50e+00 1.30e+02 6.30e-01
POBL-ADE 1.00e+00 2.20e+01 3.60e+00 1.70e-01
rmalschma 9.90e-01 6.20e-02 1.90e-01 3.10e-01

RSDE 2.00e+00 3.50e+00 1.90e+01 3.60e-01
SOO 9.00e+00 1.30e+02 3.50e+02 4.40e-01

SOO-BOBYQA 9.00e+00 1.30e+02 3.50e+02 4.20e-01
UMOEAs 9.90e-01 6.20e-02 3.50e+00 3.20e-01

MP-AIDEA-ALR 0.00e+00 0.00e+00 0.00e+00 2.00e-02

TABLE VI: CEC 2014 Ranking, nD = 30, ρ = 0.3.

Case A Case B Case C Case D
ρ̄ = 0.1 ρ̄ = 0.3 ρ̄ = 0.2 ρ̄ = 0.2

δglobal = 0.1 δglobal = 0.1 δglobal = 0.2 δglobal = 0.3
1 L-SHADE L-SHADE L-SHADE L-SHADE
2 UMOEAs UMOEAs UMOEAs UMOEAs
3 GaAPADE MP-A.-ALR GaAPADE GaAPADE
4 MP-A.-ALR GaAPADE MP-A.-ALR MP-A.-ALR
5 CMLSP CMLSP CMLSP CMLSP
6 rmalshcma rmalschma rmalshcma rmalshcma
7 MVMO MVMO MVMO MVMO
8 DE-b6e6rl DE-b6e6rl DE-b6e6rl DE-b6e6rl
9 b3e3pbest b3e3pbest b3e3pbest b3e3pbest
10 FERDE FERDE FERDE FERDE
11 RSDE RSDE RSDE RSDE
12 FWA-DE FWA-DE FWA-DE FWA-DE
13 POBL-ADE POBL-ADE POBL-ADE POBL-ADE
14 OptBees OptBees OptBees OptBees
15 SOO-BOBYQA SOO-BOBYQA SOO-BOBYQA SOO-BOBYQA
16 NRGA NRGA NRGA NRGA
17 FCDE FCDE FCDE FCDE
18 SOO SOO SOO SOO

1) Sensitivity to ρ̄ and δglobal: This subsection is devoted
to a preliminary analysis of the sensitivity of the performance
of MP-AIDEA-ALR to the two parameters that are not auto-
matically adapted: ρ̄ and δglobal. Table VI shows the ranking
obtained when varying ρ̄ and δglobal for the 30 dimension
test case of the CEC2014 competition, the one in which the
performance of MP-AIDEA-ALR were poorest. In particular,
case B shows the ranking obtained when using ρ̄ = 0.3 instead
of ρ̄ = 0.1. Comparing the results with table IV one can see
that with ρ̄ = 0.3 MP-AIDEA-ALR performs better and moves
from the fourth to the third position in the ranking. At the same
time there seems to be a reduced sensitivity of MP-AIDEA-
ALR to the settings of δglobal.

D. Distance from the Best
Figures from 2 to 9 show the relative difference between

the result of MP-AIDEA-ALR and the result of the best
performing algorithm for each of the functions used in the
tests. Both the difference in best and mean value are reported
in each figure.
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Fig. 2: Relative difference between MP-AIDEA-ALR and the
best performing algorithm for each of the selected functions
of the CEC2005 competition at 10D
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Fig. 3: Relative difference between MP-AIDEA-ALR and the
best performing algorithm for each of the selected functions
of the CEC2005 competition at 30D

IV. CONCLUSION

This paper has introduced Multi-Population Adaptive Infla-
tionary Differential Evolution Algorithm with Adaptive Local
Restart, an algorithm based on the hybridization of Differential
Evolution with Monotonic Basin Hopping. MP-AIDEA-ALR
automatically adapts CR and F for the DE heuristics and two
of the four parameters controlling the heuristic of the MBH.
In particular, in this paper, a mechanism to avoid the multiple
detection of the same local minima has been presented. MP-
AIDEA-ALR has been tested over more than fifty functions
from the CEC competitions. Results showed that the algorithm
is averagely very efficient over a large number of function
tested on different dimensions. MP-AIDEA-ALR was indeed
always in the first three position of the algorithm ranking,
except for the 30 dimension test cases of CEC 2014.
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Fig. 4: Relative difference between MP-AIDEA-ALR and the
best performing algorithm for each of the selected functions
of the CEC2005 competition at 50D
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Fig. 5: Relative difference between MP-AIDEA-ALR and the
best performing algorithm for each of the selected functions
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