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Abstract 

Enhanced Geothermal Systems (EGS) are an attractive source of low-carbon electricity and heating. 

Consequently, a number of tests of this technology have been made during the past couple of decades 

and various projects are being planned or under development. EGS work by the injection of fluid into 

deep boreholes to increase permeability and hence allow the circulation and heating of fluid through a 

geothermal reservoir. Permeability is irreversibly increased by the generation of microseismicity 

through the shearing of pre-existing factures or fault segments. One aspect of this technology that can 

cause public concern and consequently could limit the widespread adoption of EGS within populated 

areas is the risk of generating earthquakes that are sufficiently large to be felt (or even to cause 

building damage). Therefore, there is a need to balance stimulation and exploitation of the geothermal 

reservoir through fluid injection against the pressing requirement to keep the earthquake risk below an 

acceptable level. 

Current strategies to balance these potentially conflicting requirements rely on a traffic light system 

based on the observed magnitudes of the triggered earthquakes and the measured peak ground 

velocities from these events. In this article we propose an alternative system that uses the actual risk of 

generating felt (or damaging) earthquake ground motions at a site of interest (e.g. a nearby town) to 

control the injection rate. This risk is computed by combining characteristics of the observed 

seismicity of the previous six hours, with a (potentially site-specific) ground-motion prediction 

equation to obtain a real-time seismic hazard curve, and then the convolution of this with the 

derivative of a (potentially site-specific) fragility curve. Based on the relation between computed risk 

and pre-defined acceptable risk thresholds the injection is: increased (if the risk is below the amber 

level), decreased (if the risk is between amber and red levels) or stopped completely (if the risk is 

above the red level). Based on simulations using a recently developed model of induced seismicity in 

geothermal systems, which is checked here using observations from the Basel EGS, in this article it is 

shown that the proposed procedure could lead to both acceptable levels of risk and increased 

permeability. 
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1. Introduction 

Current strategies for Enhanced Geothermal Systems (EGS) stimulation and exploitation seek to avoid 

potentially damaging earthquake ground motions by keeping the magnitude of the largest event (or 

perhaps the largest peak ground velocity, PGV) below a certain level through the so-called „traffic 

light‟ procedure (Bommer et al., 2006). Rather than use these hazard parameters, it would be better to 

seek to keep the risk, calculated by convolving the hazard curve and an appropriate fragility curve, 

below an acceptable threshold. An appropriate fragility curve could be one characterising the 

probability of feeling an earthquake given a certain ground-motion level. The local population is 

concerned with the risk that they are exposed to rather than the hazard level, which is difficult to 

appreciate and is not a direct measure of the potential impact on people of seismicity. This article 

presents how this could be done using: a recently-developed physical model of induced seismicity 

from fluid injection (Aochi et al., 2013), a ground-motion prediction equation (GMPE) developed for 

EGS applications (Douglas et al., 2013a) and an example fragility curve expressing the chance of 

feeling earthquake shaking. The proposed protocol is tested for a hypothetical reservoir. 

Bachmann et al. (2011), extended by Mena et al. (2013), proposed a similar approach based on 

observations from the induced Basel 2006 earthquake sequence coupled to a macroseismic intensity 

prediction equation (IPE, e.g. Cua et al., 2010). These studies were based on epidemic-type aftershock 

sequence models of seismicity rather than full physical models. Bachmann et al. (2011) and Mena et 

al. (2013) used the actual injection history as an input to their calculations but they did not try altering 

the injection (flow) rate, although this could have been done. Convertito et al. (2012) undertook 

similar analyses (although they did not go as far as computing the risk) for The Geysers (California) 

geothermal field over a period of roughly three years but, as it is an observational study, the effect of 

varying the injection rate to control the hazard (or risk) was not studied. 
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In the following section the proposed approach is outlined. Testing of this approach relies on being 

able to simulate induced seismicity and the influence of fluid injection on this seismicity and the 

permeability of the reservoir. Therefore, in the subsequent section the simulation procedure developed 

by Aochi et al. (2013) is checked using the injection history and associated earthquake catalogue from 

the Basel EGS experiment of December 2006. In Section 4 an injection protocol is proposed following 

the philosophy adopted here in which the risk is controlled and tested for various scenarios. The article 

ends with a discussion and some brief conclusions. 

2. Proposed approach 

As shown by, for example, Kennedy (2011) the seismic risk can be obtained by the so-called risk 

integral, in which the seismic hazard curve (derived by probabilistic seismic hazard assessment, 

PSHA) and the derivative of the fragility curve, which is often modelled as a lognormal probability 

distribution function, are convolved. As discussed by Douglas et al. (2013b), the technique of „risk-

targeting‟, based on the risk integral, is being used to develop the next generation of seismic design 

maps in some countries (e.g. the USA). In this approach the fragility curve, expressing the probability 

of collapse given a certain level of ground motion, is moved left (implying weaker buildings) or right 

(implying stronger buildings) to obtain a design map (representing the ground motions that should be 

designed against) that would lead to a uniform level of risk nationally. Because these maps consider 

natural seismicity, for which the hazard cannot be changed, it is the vulnerability that is altered (by 

imposing stricter or laxer building requirements) to change the risk level. For EGS the vulnerability of 

the neighbouring buildings (or sensitivity of the local population) cannot be altered1. However, 

because the hazard can potentially be controlled by the operator, in this case it is the hazard curve that 

is modified by adopting a different reservoir stimulation/exploitation scheme. This observation and the 

risk integral are the basis of the procedure proposed here. 

                                                           
1
 Another way of reducing the risk would be to reduce the exposure by developing EGS away from populated 

areas. However, because of the dual use of these systems to produce heat for buildings (in addition to 

electricity) it is often preferable, from an energy efficiency point of view, for them to be developed close to a 

town that can use the generated heat.  
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In the proposed procedure the hazard curve is iteratively updated as time progresses and earthquakes 

occur (or do not occur). PSHA for a point source (reservoir) and a single site (e.g. centre of the local 

town) (roughly the situation of interest for EGS) is straightforward. It can be conducted in a couple of 

simple integration loops based on a and b values of the Gutenberg-Richter relation for the earthquake 

catalogue of the reservoir (or extrapolated into the future since these parameters change with time) and 

an appropriate GMPE for PGV, e.g. those recently developed by Douglas et al. (2013a). Next the 

fragility curve expressing the probability of the population feeling earthquake shaking given a level of 

PGV is required. This could be taken from the literature or it could be developed to produce site-

specific curves based on felt/non-felt reports (macroseismic intensity reports) and the maximum-

likelihood method (e.g. Shinozuka et al., 2000), for example. These could even be updated as data 

becomes available for a specific EGS. Here we use the modified-Mercalli intensity (MMI)-PGV 

correlations of Worden et al. (2012) as the fragility curve. The PGVs given by this curve for 10%, 

75% and 95% probability of being felt roughly correspond to the thresholds of „Just perceptible‟ 

(0.1cm/s), „Clearly perceptible‟ (0.65cm/s) and „Disturbing‟ (1.3cm/s), respectively, of the traffic light 

system of Bommer et al. (2006).  

A one-step method of estimating the earthquake risk is to use IPEs, which directly predict the 

macroseismic intensity, rather than GMPEs and fragility curves. This approach is followed by 

Bachmann et al. (2011) and Mena et al. (2013), for example, to obtain curves that express the annual 

frequency of exceedance for different macroseismic intensities. We do not follow this direct approach 

here for two reasons. Firstly, it is less flexible than the two-step process and, secondly, it is more 

difficult to make it site-specific since IPEs are generally developed for entire countries or even 

tectonic regimes (e.g. active crustal seismicity) whereas GMPEs can be tailored to a specific site and 

fragility curves can be developed for a certain structure type or population. Also the lack of robust 

IPEs means that accounting for epistemic uncertainties through a logic tree (Kulkarni et al., 1984) is 

more difficult since there are fewer candidate IPEs than GMPEs and fragility curves.  

By convolving the seismic hazard curve and the derivative of the fragility curve, the seismic risk, 

expressed in terms of the annual probability of feeling an earthquake, at that time step is computed. 
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This annual probability could be converted to a daily probability, which is more relevant for EGS 

operations and felt/non-felt shaking. Next, this probability is compared to the level of acceptable risk 

for the local population. If the computed risk is less than the acceptable risk then the EGS stimulation 

can continue (and perhaps be increased) but if it is higher, then actions should be taken (e.g. reduction 

in injection rate). Details of the protocol developed here are given in Section 4. 

3. Checking the simulation approach of Aochi et al. (2013) 

Testing of the approach proposed here relies on the ability to simulate earthquake catalogues for 

induced seismicity that are a function of the injection characteristics and other properties of the 

geothermal reservoir. Various models have been recently developed to simulate such catalogues. For 

example, Bruel (2007) presents a physical model to predict the seismicity of a geothermal reservoir, as 

do Hakimhashemi et al. (2013) who go the extra step and use their procedure to compute time-

dependent seismic hazard. Goertz-Allmann and Wiemer (2013) also simulate induced seismicity due 

to pressure-driven stress changes (a linear diffusion model of pore pressure and a Mohr-Coulomb 

criterion) and they discuss the characteristics of the generated seismicity. In this article we use the 

recently-developed simulation technique presented by Aochi et al. (2013). Making use of a „fault 

lubrication approximation‟, in this technique the equations within the volumetric fault core are 

projected onto the 2D fault interface along which seismicity takes place, within a finite permeable 

zone of variable width. The seismicity is then modelled through a system of equations describing fluid 

migration, fault rheology, fault thickness and stress redistribution from shear rupturing, triggered 

either by shear loading or by fluid injection.  

Since the reliability of the stimulation protocol presented below strongly depends on the ability of the 

adopted simulations to model observed behaviour in geothermal reservoirs and the induced seismicity, 

in this section we check the approach of Aochi et al. (2013) against observations from an EGS. The 

observations from the 2006 Basel stimulation experiment (Häring et al., 2008) were selected for this 

test. We impose the injection history and check the calculated pressure and earthquake catalogue 

against the observations. Earthquakes with moment magnitudes larger than 1 are simulated due to the 
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size of the smallest factures considered. The moment magnitudes of the observed earthquakes are 

those recomputed by Douglas et al. (2013a) from the seismic waveforms. For the earthquake catalogue 

the comparison is made in the time domain and also in terms of the magnitude-frequency distribution 

(Gutenberg-Richter plots). 

We make two modifications to the simulation procedure presented in Aochi et al. (2013). Firstly we 

introduce a normal stress (n ) on which the constitutive relation of permeability  (Miller et al., 

2004) is dependent: 

 0
0

exp n  
     , 

where 0  and 0  are constants. Secondly, we introduce a multi-scale heterogeneity in fault strength 

in analogue to the approach of Ide and Aochi (2005) and Aochi and Ide (2009). We consider a set of 

circular patches of different sizes (radii 02n
nr r  for rank n) whose number follows this scaling 

relation: 

 2
0

n
nN D N , 

where 0r , D, and 0N  are constants and the integer n = 0 to 6. 

Details of the seismicity are dependent on the asperities randomly generated in the model. As the 

positions and sizes of fault asperities cannot, with current technology and procedures, be measured 

before injection, there is always uncertainty in the seismicity that will be induced. To characterise this 

uncertainty, earthquake catalogues for the 2006 Basel injection have been simulated a hundred times 

for different initial generated asperities (Figures 1 and 2). The parameters used for all these examples 

are: 10
0 3 10   m2, 6

0 6 10   MPa, D = 1.5, and 0N  14; the other parameters are the same as 

in Aochi et al. (2013). 
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Comparing the hundred simulated catalogues (Figure 1) shows the importance of the random 

distribution of the asperities at all magnitudes. The size of the largest earthquake is controlled by the 

largest asperities (see below). The difference in temporal evolution originates from the spatial 

distribution of the asperities. The simulated seismicity shows great variation; sometimes the seismicity 

begins at the start of the injection and many earthquakes are generated, whilst in other cases few 

events are induced. The largest event occurs during the period of the highest injection rate in some 

cases or it happens following the reduction in the injection rate, as was observed in the 2006 Basel 

experiment. These scenarios clearly demonstrate that it is important to take into account many possible 

scenarios within a risk assessment for induced seismicity. In the magnitude-frequency relation (Figure 

2) the observations are roughly in the middle of the simulations, although the simulations show large 

variations on either side.  

4. Application of proposed method 

In this section we develop a protocol for the stimulation of the EGS reservoir that seeks to keep the 

risk of felt shaking below a certain threshold. This protocol is developed using the induced seismicity 

simulation technique presented in Aochi et al. (2013) and tested above. The different input 

components required for these simulations are presented in the following subsections. Because of the 

short time scales considered, all the analyses are conducted for daily rather than annual exceedance 

frequencies, which are standard for PSHA of natural seismicity. 

In all these examples it is assumed that the hypocentral distance (Rhyp) between the reservoir and the 

site is 5km, which roughly corresponds to a site directly above a reservoir being exploited as part of an 

EGS and a reservoir that is small enough to be assumed as a point source. The impact of changing this 

distance is simply to scale up or down the hazard and consequently the risk. The source-to-site 

distance has a strong impact on the ground motions experienced at a site. Therefore, if the seismicity 

was particularly shallow it could be difficult to keep the risk of felt shaking below an acceptable level. 
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Length of time used for PSHA 

Standard PSHA relies on the assumption that the seismic hazard is stationary in time. This assumption 

is, however, clearly violated in the case of induced seismicity. In this case it is necessary to assume a 

period over which the seismicity can be considered stationary. We have selected six hours for this 

period because, as noted below, this was the interval between potential increases or decreases in the 

injection rate within our procedure. Using a shorter period (e.g. 1 hour) would make the risk change 

more rapidly whereas using a longer interval (e.g. 24 hours) would lead to more gradual changes in the 

risk. Because in each time interval there are often too few earthquakes to compute a robust estimate of 

the slope (b) of the Gutenberg-Richter relation this value is fixed a priori and the activity rate (a) is 

computed based on the number of earthquakes larger than Mw 1 simulated during the previous six 

hours. As shown in Figure 2 the magnitude-frequency relations of the simulated catalogues show 

considerable variation. Therefore, we consider the impact of b on the results by using values of 0.5, 1 

and 1.5, which cover the range observed for the simulations. a is then normalized to give the number 

of earthquakes per day (assuming stationarity) so that the daily risk is obtained. After each time-step 

of the simulations (one second) these parameters are updated and consequently the hazard and 

subsequently the risk recalculated.  

Mmax 

Mmax is the magnitude of the largest earthquake that can occur in the reservoir. It is used to truncate the 

relation defining the magnitude-frequency distribution (e.g. Gutenberg-Richter relation). Kijko (2004) 

presents three approaches to estimate Mmax based on earthquake catalogues. The equations for his Case 

I („Use of the Generic Formula when earthquake magnitudes follow the Gutenberg-Richter magnitude 

distribution‟) were tested here for the catalogues in each interval. Because for many simulations there 

are few (or even no) events in a given six-hour interval the estimates of Mmax obtained using this 

approach show great variation from one interval to the next. In general, they are poor estimates of the 

maximum sizes of future earthquakes because the seismicity is non-stationary.  
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Therefore, estimating Mmax from the on-going simulations would not account for the occurrence of 

events much larger than had already been observed during the injection. Thus, we choose to define this 

parameter a priori. Mmax is difficult to define for induced seismicity (e.g. Bachmann et al., 2011); 

although McGarr (1976) and Shapiro et al. (2013) present formulae to estimate this parameter based 

on gross characteristics of the reservoir and injected volume. Here, we firstly use Mmax=5, which as 

shown below is a reasonable assumption given the sizes of the randomized factures within the 

reservoir and with respect to the magnitude-frequency plot shown in Figure 2. Subsequently, we 

discuss the impact of this choice on the computed risk. We use the doubly-truncated Gutenberg-

Richter relation as the model of earthquake occurrence. 

GMPE 

Douglas et al. (2013) develop a set of GMPEs using the stochastic method to account for epistemic 

uncertainties and to allow site-specific PSHA to be conducted. The selection and weighting of the 

stochastic GMPEs for site-specific analyses is discussed by Edwards and Douglas (2013) using the 

example of Cooper Basin EGS. For simplicity, within this article the empirical PGV GMPE (model 1, 

corrected for site effects) of Douglas et al. (2013), i.e.: ln PGV=-9.999+1.964Mw-1.405 

ln(Rhyp
2+2.9332)1/2-0.035Rhyp is used (where PGV is in m/s). Because in the case considered there is a 

single source (reservoir) and a single site, the aleatory variability () to be used with the GMPE is 

given by: =( SS
2+ ZS

2) where  SS is the single-station within-event variability and ZS is the zone-

specific between-event variability. Using SS and ZS reported by Douglas et al. (2013) gives a  of 

0.81 (natural logarithms).  

Fragility curve 

With respect to seismic risk, the first goal of EGS exploitation is not to induce earthquakes that are felt 

by the local population. Therefore, the measure of risk considered in this article is the probability that 

earthquake ground motions will be felt. As shaking widely felt by the local population corresponds to 

macroseismic intensity III (on the majority of scales, including the Modified Mercalli), the fragility 

curve used here is that modelled by the relations of Worden et al. (2012) for this intensity.  
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The exceedance probabilities computed by Bachmann et al. (2011) and Mena et al. (2013) for the 

Basel sequence using macroseismic intensities show that the probability of intensity III (felt shaking) 

is close to unity throughout the injection period. Therefore, it may be better to base the thresholds on 

the risk of higher intensities that show greater sensitivity to the injection rate. As shown by Eads et al. 

(2013) for collapse risk, the majority of the risk calculated by convolving the hazard and derivative of 

the fragility curve comes from the lower half of the curve, i.e. small but frequent ground motions. 

Therefore, the lowest level for which shaking can be felt is important to constrain but currently this 

threshold is poorly known, particularly for induced shaking. 

Acceptable risk 

The question of what seismic risk is acceptable to the local population plays a central role in the 

procedure but it is probably the most difficult parameter to constrain since it depends on the local 

population (e.g. their reaction to EGS in general, their fear of a future large earthquake, the 

background seismicity and whether the number of felt earthquakes was increasing or decreasing) and 

there are very few published studies on the acceptability of EGS. Is one felt earthquake a year 

acceptable? What about one felt earthquake a month? Or a week? Analysis of local populations‟ 

reaction to previous EGS operations and earthquake swarms (e.g. Basel 2006) could be made to define 

this acceptable risk by, for example, retrospectively estimating the risk at which the decision was 

made to halt injections. Because of the lack of previous studies on this parameter we conducted a 

sensitivity analysis for two risk thresholds: one above which the risk is clearly unacceptable and 

injection must cease (red) and one below which the EGS operator should aim to remain (amber). 

Exploitation strategy 

The fluid injection rates and the steps between different rates for the exploitation strategy proposed 

here are based on those employed in recent geothermal projects (see Figure 1 for the injection history 

used at Basel). For Cooper Basin (Australia) Baisch et al. (2006) show that the rates were less than 

about 40 L/s with steps of about 5 L/s between different levels; for Berlin (El Salvador) rates on 

average were 15 L/s according to Bommer et al. (2006); at Soultz rates were generally lower than 50 
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L/s with steps of about 10 L/s (Charlety et al., 2007); and at Basel the maximum rate was about 60 L/s 

with steps of around 10 L/s (Häring et al., 2008). Generally injection rates were generally kept 

constant over a certain period (e.g. roughly 12 hours for Basel) before being increased or decreased.  

The following injection strategy was developed after much trial and error. It was difficult to choose 

risk thresholds that led to a sustainable injection history (i.e. one that did not increase to large rates 

that are unrealistic with respect to recent geothermal projects or one where the rates decreased to zero). 

We recognise that other strategies are possible – the purpose of this article is to demonstrate the 

feasibility of using computed risk to control injection. 

At the beginning of the simulation the fluid injection rate is set to 10 L/s, which is well below the 

maximum rates used for EGS stimulations and unlikely to cause much seismicity. Consequently the 

risk should stay below the amber threshold during the initial injection period. The seismicity is then 

simulated using the same approach as used in the previous section and subsequently the hazard and 

risk are computed using the input parameters discussed above. Once the risk has been computed there 

are two possibilities: either the risk is lower than the (amber) acceptable risk threshold or it is higher. 

In the first case the injection rate could be increased and in the second it should be decreased (or if the 

risk is above the red threshold then the exploitation should be completely halted and the regulator 

informed). The simple algorithm used to define the exploitation strategy is shown in Figure 3. It was 

decided not to allow the injection rate to be changed too often so as to let the seismicity stabilize and 

because it may be difficult from an operator‟s viewpoint to constantly change the injection rate. Using 

the a (converted to a daily rate) and b values given by Bachmann et al. (2011) for the injection period, 

in conjunction with the other input parameters used here [e.g. the PGV GMPE and the fragility curve 

for intensity III of Worden et al. (2012)] a daily risk of felt motions was computed as 0.7 for Basel, 

which informed the value we chose for the amber threshold. Following various tests, we finally 

selected 0.8 for the amber threshold and 0.9 for the red threshold.  
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Simulations 

Firstly, we conduct six simulations assuming b=1 and Mmax=5, where the influence of the randomly-

generated asperities is studied (Figure 4). The exploitation strategy described above is implemented 

and allowed to run until either the injection is brought to an end because the risk surpasses the red 

threshold, or the seismicity ends because all the asperities have ruptured.  

As noted above there is uncertainty over the value of b to use for these simulations and, therefore, we 

repeat the same simulations using b=0.5 and 1.5 (Figures 5 and 6). The same heterogeneity map is 

assumed for each panel, e.g. the same map for Figures 4(a), 5(a) and 6(a). Assuming b=0.5 (Figure 5) 

leads to a higher estimated risk (because there are more large earthquakes predicted) and consequently 

the injection is stopped in all the cases. In contrast, assuming b=1.5 (Figure 6) leads to much lower 

risk estimates and hence higher injection rates are allowed.   

When Mmax is reduced to 4 or even to 3, it is expected that the estimated risk would greatly reduce and 

hence higher injection rates would be authorised by the exploitation strategy. However, using low 

values of Mmax is not justified for many of the simulated reservoirs because of the large asperities that 

are present. Only if the reservoir could be sufficiently well imaged so that the size of the largest 

possible earthquakes caused by the injection could be accurately estimated would using low values of 

Mmax be justified. Given current techniques for reservoir imaging this is not possible. As an example of 

what could be envisaged if such imaging techniques were available, the largest earthquakes possible 

for the six simulated asperity networks are computed using the size of the largest asperity to roughly 

estimate Mmax. The largest patch that can be potentially ruptured has a radius (r) of 960 m. Initially 

without any change in pore pressure, the possible stress drop is 3.5 MPa, computed using a difference 

between static and dynamic frictional coefficients of 0.05 and an effective normal stress of 70 MPa. 

The relation between slip (D) and stress drop ( ) on a circular crack is given by             
(Madariaga, 1979), where   is the rigidity of the medium. Therefore, we estimate D = 0.08 m in this 

case. This corresponds then to an event of Mw = 4.5, which could be used as Mmax.  
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5. Discussion 

The slope of the Gutenberg-Richter plot (b) computed at each time-step does not show much variation 

over the entire period of injection and hence it is the activity rate (a) that is the principal driver of 

variations in the hazard and, consequently, the risk. In addition, plotting the hazard curves obtained at 

each time-step shows that they are generally almost straight in log-log space over many orders of 

magnitude. Kennedy (2011), amongst others, shows that if the hazard curve can be simplified as a 

straight line in log-log space then, for the case of fragility curves expressed in terms of a lognormal 

distribution, the risk can be calculated analytically. Working backwards, assuming a constant b, allows 

thresholds on the rate of earthquakes to be defined. These could be used to control the injection rate 

rather than requiring the actual risk to be calculated. Alternatively this approach would also allow the 

relation between the magnitude of the largest observed earthquake and the level of risk to be 

analytically defined, thereby returning to a classic traffic light system. 

How could the protocol presented above be used by an EGS operator for a specific site? One way in 

which this study could help guide EGS stimulation would be to run this type of analysis using site-

specific inputs (e.g. Rhyp, fragility curves, GMPEs and reservoir parameters) to provide guidance on 

the rates of injection that are „safe‟ from the risk viewpoint. However, many of the parameters used to 

characterise the reservoir and control the seismicity are difficult to define and, therefore, it is unlikely 

that this guidance would provide strong constraints on the acceptable injection strategy. The other way 

in which the protocol could be useful is to implement such real-time risk calculations using the 

observed earthquake catalogue induced by the injection and then to adjust the injection rate in the 

same way as it was in the simulations. Such an application would rely, however, on the detection, 

localisation and characterisation of the microseismicity in near real-time. A more sophisticated 

approach would be to simulate an earthquake catalogue for the next, say, six hours using the planned 

injection rate and check whether this would lead to an acceptable level of risk; if not, the planned 

injection rate could be altered and the simulations re-run until the risk is acceptable. 
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6. Conclusions 

This article proposes a new approach to define the injection strategy for use when stimulating an EGS 

for power production. This approach is based on the calculation of risk via the risk integral that 

convolves a (site-specific) real-time hazard curve with a (site-specific) fragility function. The proposed 

protocol then seeks to keep the calculated risk below certain acceptable thresholds but at the same time 

increasing the reservoir‟s permeability. Using a method, which was checked in this article against 

observations for an actual EGS, to simulate earthquake catalogues of induced seismicity that are a 

function of the fluid injection rate we demonstrate that this protocol enables these two requirements to 

be balanced.  
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Figure 1: Comparison between the observed and a hundred simulated earthquake catalogues and pore pressure changes for 

the 2006 Basel injection. The imposed injection rate is shown as a grey line in each panel. A hundred sets of simulated 

seismicity (red dots) based on different distributions of randomly-generated asperities are shown as a function of time and 

magnitude. The observed earthquakes (Mw>1) for the 2006 Basel injection are marked by blue dots in the bottom left panel. 

The wellhead pressure is compared between observations (blue) and simulations (red) in the right bottom panel for a single 

simulation because the wellhead pressure is only weakly dependent on the seismicity in this example.  
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Figure 2: Comparison between the observed (red line) and simulated (grey lines) Gutenberg-Richter plots for the 2006 Basel 

injection. Simulation 83 (black line; ninth row, third column on Figure 1) appears to be the simulation giving seismicity the 

closest to the observations. 
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Figure 3: Exploitation strategy proposed here to keep the risk below an acceptable level but at the same time increasing the 

permeability of the reservoir.  
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Figure 4: Simulations of the injection and induced seismicity using the exploitation strategy of Figure 3 and assuming b=1. 

We ran six different simulations whose heterogeneity was randomly generated. The simulated seismicity is shown by black 

circles as a function of time and magnitude, the number of earthquakes per hour by grey histograms, the risk of felt shaking 

by yellow curves, the injection rate by blue lines and simulated well-head pressure by red curves.  
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Figure 5: Simulations of the injection and induced seismicity assuming b=0.5. 
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Figure 6: Simulations of the injection and induced seismicity assuming b=1.5. 

 

 




