Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Cyclic-by-row approximation of iterative polynomial EVD algorithms

Corr, Jamie and Thompson, Keith and Weiss, Stephan and McWhirter, John G. and Proudler, Ian K. (2014) Cyclic-by-row approximation of iterative polynomial EVD algorithms. In: Sensor Signal Processing for Defence (SSPD), 2014. IEEE, pp. 1-5. ISBN 978-1-4799-5294-6

[img]
Preview
Text (Corr-etal-SSPD-2014-Cyclic-by-row-approximation-of-iterative)
Corr_etal_SSPD_2014_Cyclic_by_row_approximation_of_iterative.pdf - Accepted Author Manuscript

Download (164kB) | Preview

Abstract

A recent class of sequential matrix diagonalisation (SMD) algorithms have been demonstrated to provide a fast converging solution to iteratively approximating the polynomial eigenvalue decomposition of a parahermitian matrix. However, the calculation of an EVD, and the application of a full unitary matrix to every time lag of the parahermitian matrix in the SMD algorithm results in a high numerical cost. In this paper, we replace the EVD with a limited number of Givens rotations forming a cyclic-by-row Jacobi sweep. Simulations indicate that a considerable reduction in computational complexity compared to SMD can be achieved with a negligible sacrifice in diagonalisation performance, such that the benefits in applying the SMD are maintained.