Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Cyclic-by-row approximation of iterative polynomial EVD algorithms

Corr, Jamie and Thompson, Keith and Weiss, Stephan and McWhirter, John G. and Proudler, Ian K. (2014) Cyclic-by-row approximation of iterative polynomial EVD algorithms. In: Sensor Signal Processing for Defence (SSPD), 2014. IEEE, pp. 1-5. ISBN 978-1-4799-5294-6

[img]
Preview
Text (Corr-etal-SSPD-2014-Cyclic-by-row-approximation-of-iterative)
Corr_etal_SSPD_2014_Cyclic_by_row_approximation_of_iterative.pdf - Accepted Author Manuscript

Download (164kB) | Preview

Abstract

A recent class of sequential matrix diagonalisation (SMD) algorithms have been demonstrated to provide a fast converging solution to iteratively approximating the polynomial eigenvalue decomposition of a parahermitian matrix. However, the calculation of an EVD, and the application of a full unitary matrix to every time lag of the parahermitian matrix in the SMD algorithm results in a high numerical cost. In this paper, we replace the EVD with a limited number of Givens rotations forming a cyclic-by-row Jacobi sweep. Simulations indicate that a considerable reduction in computational complexity compared to SMD can be achieved with a negligible sacrifice in diagonalisation performance, such that the benefits in applying the SMD are maintained.