Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Miniaturized photoacoustic trace gas sensing using a raman fiber amplifier

Bauer, Ralf and Legg, Thomas and Mitchell, David and Flockhart, Gordon M. H. and Stewart, George and Johnstone, Walter and Lengden, Michael (2015) Miniaturized photoacoustic trace gas sensing using a raman fiber amplifier. Journal of Lightwave Technology, 33 (18). pp. 3773-3780. ISSN 0733-8724

[img]
Preview
Text (Bauer-etal-JLT-2015-Miniaturized-photoacoustic-trace-gas-sensing-using-a-raman-fiber)
Bauer_etal_JLT_2015_Miniaturized_photoacoustic_trace_gas_sensing_using_a_raman_fiber.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (864kB) | Preview

Abstract

This paper presents the development of a Raman fiber amplifier optical source with a maximum output power of 1.1 W centered around 1651 nm, and its application in miniaturized 3D printed photoacoustic spectroscopy (PAS) trace gas sensing of methane. The Raman amplifier has been constructed using 4.5 km of dispersion shifted fiber, a 1651 nm DFB seed laser and a commercial 4W EDFA pump. The suppression of stimulated Brillouin scattering (SBS) using a high frequency modulation of the seed laser is investigated for a range of frequencies, leading to an increase in optical output power of the amplifier and reduction of its noise content. The amplifier output was used as the source for a miniature PAS sensor by applying a second modulation to the seed laser at the resonant frequency of 15.2 kHz of the miniature 3D printed gas cell. For the targeted methane absorption line at 6057 cm-1 the sensor system performance and influence of the SBS suppression is characterized, leading to a detection limit (1σ) of 17 ppb methane for a signal acquisition time of 130 s, with a normalized noise equivalent absorption coefficient of 4.1•10-9 cm-1 W Hz-1/2 for the system.