Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Wideband TV white space transceiver design and implementation

Elliot, Ross A. and Enderwitz, Martin A. and Thompson, Keith and Crockett, Louise H. and Weiss, Stephan and Stewart, Robert W. (2016) Wideband TV white space transceiver design and implementation. IEEE Transactions on Circuits and Systems II: Express Briefs, 63 (1). pp. 24-28. ISSN 1558-3791

[img]
Preview
Text (Elliot-etal-TOCASII-EB-2015-Wideband-TV-white-space-tranceiver-design-and-implementation)
Elliot_etal_TOCASII_EB_2015_Wideband_TV_white_space_tranceiver_design_and_implementation.pdf - Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (925kB) | Preview

Abstract

For transceivers operating in television white space (TVWS), frequency agility and strict spectral mask fulfilments are vital. In the UK, TVWS covers a 320 MHz wide frequency band in the UHF range, and the aim of this paper is to present a wideband digital up- and down converter for this scenario. Sampling at radio frequency (RF), a two stage digital conversion is presented, which consists of a polyphase filter for implicit upsampling and decimation, and a filter bank-based multicarrier approach to resolve the 8MHz channels within the TVWS band. We demonstrate that the up- and down-conversion of 40 such channels is hardly more costly than that of a single channel. Appropriate filter design can satisfy the mandated spectral mask and control the reconstruction error. An FPGA implementation is discussed, capable of running the wideband transceiver on a single Virtex-7 device with sufficient word length to preserve the spectral mask requirements of the system.