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Abstract 

The potentially highly informative, but complex fluorescence decay of amino acids in protein is not fully 

understood and presents a barrier to understanding. Here we have tested a new and general approach to 

describing experimentally measured the fluorescence decay in a heterogeneous macroscopic sample. The 

decay parameters carry information on the features of the kinetics induced by the environment’s 

heterogeneity. Bayesian interference demonstrated that the model fits well to the fluorescence decay of 

tryptophan in Human Serum Albumin (HSA). The approach has the potential to accelerate photophysical 

research of heterogeneous media and, specifically, to solve a critical outstanding problem in interpreting 

protein fluorescence, paving the way to further progress in biomedical research. 
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1. Introduction 

The intrinsic fluorescence of a protein carries information on its conformation and activity. However, the 

complex fluorescence decay of intrinsic fluorophores in protein, namely phenylalanine, tyrosine and 

tryptophan, is still not fully understood. Interpretation of fluorescence the decay exhibited by fluorescent 

amino acids in biological systems is a part of a bigger, unresolved, problem of explaining the multifarious 

decay observed in heterogeneous media, traditionally  analysed by fitting to multi-exponential functions. 

After several decades of research into protein fluorescence decay using such analysis, two dominating 

models have emerged: the rotamer model and the model of dielectric relaxation.  

The rotamer model [1-5] states that the discrete ground-state conformations of fluorophores (rotamers) 

exhibit different decay times, as each rotamer has different paths and rates of depopulation of the excited 

state. The model attributes the components of multi-exponential decays, or the peaks in the lifetime 

distributions, to individual rotamers. 

In the relaxation model [6,7], the fluorophores are in a single conformation, but their fluorescence 

spectrum shift to longer wavelengths on a nanosecond time scale due to a solvent response to the excited-

state dipole. The multi-exponentiality of the observed decay is explained by the loss of fluorescence 

intensity, and thus adding a short-lifetime component, at short wavelengths. Conversely, the increase in 

fluorescence intensity at long wavelengths adds an increasing component (with negative amplitude) at 

long wavelengths of the spectrum. The main experimental argument supporting the relaxation model is 

the lifetime-wavelength correlation, that is, the mean decay lifetimes increasing with the detection 

wavelengths.  

Whilst the lack of explanation for lifetime-wavelength correlation in the rotamer model is used as 

evidence against it; the lack of the common appearance of negative amplitudes in protein decays 

questions the validity of the relaxation model. This ambiguity surrounding the interpretation of protein 

autofluorescence has hampered the development of protein fluorescence lifetime-based research and its 

application in biomedical sciences. Some progress has been achieved recently by quantum mechanics – 

molecular mechanics simulations [8], which explain the lifetime-wavelength correlation within the 

rotamer model, suggesting that rotamers emitting at shorter wavelengths are more likely to be involved in 

charge transfer, and thus they have shorter lifetimes. 

The purpose of this paper is to apply a statistical approach which does not rule out multiple conformations 

and dielectric relaxation, but, instead of considering interactions of individual fluorophores, calculates 

fluorescence response of a macroscopic sample, which results in other than multi-exponential 
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fluorescence decay. Briefly, the heterogeneous environment is modelled by a completely assymetric -

stable distribution of the transition rates k of depopulation of the excited state, with an impact on the 

fluorescence decay of the macroscopic sample. Validity of this model is demonstrated on the example of 

tryptophan in human serum albumin (HSA) and its applicability to the whole area of fluorescence in 

heterogeneous media is discussed. 

 

2. Kinetic model 

Here, we assume that the probability of a randomly selected fluorophore to remain in the excited state at 

time t after excitation decays in two stages. In the first stage, from time 0 up to the certain  time tc called 

maximum quenching time, the decay is exponential with the rate k=kr+knr+kq, which is the sum of the 

radiative, nonradiative and quenching transition rates, respectively. In this stage, the fluorophore is likely 

to be quenched, e.g. due to charge transfer or other environment-induced non-radiative transition, thus k is 

relatively high. If, however, the fluorophore survived in the excited state by the time tc, the probability of 

remaining in the excited state in the second stage, ie for t>tc, decreases substantially slower. In the 

approximation considered in this paper, it stops decaying and remains constant for the time exceeding the 

time range when the fluorescence is detected in lifetime experiment. As we show later, this is not in 

contradiction to the fluorescence always decaying to zero.  

The radiative transition rate kr is the same for all fluorophores. Nonradiative knr and quenching kq 

transition rates, however, are not the same to all fluorophores, due to assumed heterogeneity of the 

molecular system. This leads to the decay rate density function     /i if k dF k dk , where  iF k
 
is the 

probability that the decay rate of the i-th fluorophore is less or equal to k. Again, due to heterogeneity of 

the environment, the value of tc is not the same for each fluorophore, but is characterised by the density 

distribution function h(tc). 

Signal detected in a fluorescence lifetime experiment is a statistical representation of the photons emitted 

by a large number N→ of fluorophores, each at an individual state of interaction with its surrounding at 

the moment of fluorescence transition. Let ti be the moment in time when the i-th fluorophore loses its 

excitation (due to a radiative or non-radiative transition). If the transient rate of decay of the i-th 

fluorophore bi=k>0, and di=tc, the conditional probability that the fluorophore is still in the excited state 

at time t is 

     , exp min( , ) 1i i i c cP t t b k d t k t t      
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The photophysics of individual molecule expressed in the eqtn (1) can be now used to obtain the 

expression for the macroscopically observable fluorescence decay I(t). The formula (1) has been 

previously proposed to describe dipole kinetics by Weron [9,10] and Weron and Jurlewicz [11], for 

dielectric relaxation phenomena in condensed systems. Here we discuss the key points of this model in 

the context of its applicability to fluorescence kinetics and adopt the derivation from the Ref. 9-11 to 

obtain the expression for I(t). No particular mechanisms resulting in the specific density distributions f(k) 

and h(t) are assumed. Instead, we search for such functions, for which I(t) exists and is a positive function 

decreasing to zero. 

In the system of N fluorophores of the decay rate values k characterised by the density distribution f(k) 

and the maximal quenching times tc by the density distribution h(tc), the time derivative of the probability 

P(ti,Nt/AN), that the randomly selected i-th molecule is still in the excited state at time t, is given by [11] 

 , 1 ; 2i N N

N N N

d t t d t
P t H L F

dt A A dt A

      
         

      

 

where AN is a normalising constant,  hN(tc)=dHN(tc)/dtc and 

   
0

exp ; 3
N N

t t
f k k dk L F

A A

    
    
   

  

is the Laplace transform of f(k). Because the moments of transitions ti,N are independent and identically 

distributed, the probability, that all initially excited molecules are still in the excited state at time t is 

   , 4lim

N

i N
N

N

t
t P t

A

  
    

    

(t) can be regarded as proportional to the population of the excited fluorophores at time t after 

excitation. However, the limiting value in the eqtn (4) exists only if F(k) and H(t) satisfy certain 

mathematical conditions. Weron and Jurlewicz demonstrated [11], that the F(k) has to be a completely 

asymmetric -stable distribution belonging to the domain of attraction of Levy-stable law and H(t) has to 

belong to the domain of attraction of the max-stable law of type II.  

This finding is based on two theorems. Firstly, the N-th power of the Laplace transform for the non-

degenerate distribution function  F k converges to the non-degenerate limiting transform as N tends to 

infinity if, and only if,  F k  belongs to the domain of attraction of the Lévy-stable law, i.e. if follows the 

condition 
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where A=1/0  is a positive constant. α depends on the detailed mechanisms of molecular interactions: for 

α→1 the decay is exponential,  α<1 indicates that the distribution f(k) is “heavy tailed” [9-11].  

Secondly, as N→, HN(t/AN) tends to a non-degenerate distribution function of non-negative random 

variable, only when  HN(t/AN)  belongs to the domain of attraction of the max-stable law of type II [11], 

that is, it obeys the condition 
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Ergo, for the normalising constant AN~N
1/α

 [11] 
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where  and  are positive constants, and A is the same as in (6). Using (2) with (6)and (8) allows 

expressing (t) in the form [11]: 
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where  is an index of stability of the stable distribution f(k),  , and  are positive constants and 0 is 

fluorescence lifetime. When t tends to infinity, the (t) tends to a positive value for α/<1, equals 0 for 

α=, and does not converge for α/>1. As fluorophores cannot be in the excited state permanently, (t), 

after long enough time, has to decay to zero. Therefore, we must choose the case α=, obtaining
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The relationship between the experimental fluorescence decay I,(t) and the function ,(t), can be 

found from the formal kinetic equation for ,(t) 
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where k(t)=kr+knr(t)+kq(t). I,(t) can be defined as 
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This formula is a fluorescence equivalent of the result obtained in [11]. As the generalisation of the 

exponential function, Iα,κ(t) is more adequate to represent fluorescence decay in the heterogeneous 

environment. For the specific values of α and , it converts into simpler model decays, which are already 

known from fluorescence applications. The degenerate case I1,0(t)~exp[-t/τ0] demonstrates that, when α=1 

and =0, the decay is single-exponential (see Fig.1a). In heterogeneous environment (resulting in <1 

and >0), the reduced index of stability α modifies the whole decay, while the parameter  influences 

only the tail part. For →0, the decay function converges to Iα,0(t)~exp[-(t/τ0)
α
]. These, so called 

stretched-exponentials (Fig.1b), have been discussed already in the context of fluorescence applications 

[14,15]. For α→1, I1,(t)~(1+(t/τ0))
-1/ 

 (Fig.1c) becomes the Becquerel function [15,16], and has been 

previously used in protein research, e.g. to study the effect of temperature on tryptophan fluorescence in 

NATA and HSA[17]. 

To investigate whether the effects of <1 and >0 may result in a fluorescence decay like those observed 

for protein, time-correlated single-photon counting [17]-type synthetic decay data were generated for a set 

of parameters 0,  and  and then analysed by means of the maximum entropy method (MEM) [18,19]. 

The technique recovers the lifetime distribution functions g(τ), which are related to the fluorescence decay 

I(t) by 

 /

0

( ) (14)tI t e g d  


   

The method we applied [19], uses Shannon-Jaynes entropy defined as

          log /S g m g g m d           , where m() is the model lifetime distribution that 

represents the prior knowledge on the system. The procedure maximizes the functional S-η2
, where 2 

is 

the mean square error between the model and the data and η is the Langrange multiplier. This approach is 
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not applicable for negative amplitudes, but is frequently used by researchers to represent complex 

fluorescence in protein. Note that the alternative approach allowing negative amplitudes was also 

presented [20]. The number of channels used in simulations was 4000, the time calibration was 0.0125 

ns/channel, and the maximum number of counts in the peak channel was set at 10000. Fig. 2a shows the 

lifetime distributions for 0=2 ns, and different  and . When α=1 and →0 (see inset), the MEM 

produces g(τ)~(τ-τ0), thus the decay is single-exponential. However, for α=1 and =0.1, the recovered 

distribution indicates a 2-exponential decay, which is characteristic for some simple protein systems, e.g. 

for tyrosine (Tyr) and NAYA [21]. For  still 0.1 and α decreasing from 1 to lower values, the resulting 

lifetime distribution gradually becomes broader and more structured, with the peaks and mean lifetime 

shifting towards longer values. Similarly, for 0=2 ns, α=0.9 and gradually increasing  (Fig.2b), the 

dominating peak shifts towards shorter values and the profile becomes more structured, with the mean 

lifetime becoming longer. We conclude that the multi-peak distributions in Fig.2 are characteristic for 

protein fluorescence decay (e.g. Refs 7, 21), and would be traditionally interpreted in terms of several 

rotamers, with a physical meaning attributed to each peak. According to our description, however, the 

peaks in Fig.2 have no physical meaning and only the parameters 0, α and  carry information on the 

kinetics. The above result also suggests that the decay (13) can be misinterpreted in real lifetime 

experiments as a multi-exponential function.  

 

3. Experimental setup and data fitting 

To verify the validity of the model decay Iα,(t) in a real protein system, the fluorescence decays of 

tryptophan (Trp) in HSA, were measured at different wavelengths of detection  and temperatures T, and 

the results were analysed by means of the dependence (13). 

HSA was purchased from Sigma-Aldrich (Poole, UK) and used without further purification. The solution 

of 30 M in 0.01 M phosphate buffer, pH7.4, was prepared on the day of measurements. Fluorescence 

decays were measured using the time-correlated single-photon counting technique, on an IBH Fluorocube 

fluorescence lifetime system (Horiba Jobin Yvon IBH Ltd., Glasgow, U.K.). The instrument has been  

equipped with an AlGaN version of the pulsed light emitting diode, working at 295 nm, in order to excite 

tryptophan only, and a temperature-controlled sample holder, connected to a Neslab RTE-11 thermostat 

(Thermo Scientific, U.K.).   

To achieve least squares fits, we performed minimum search using standard optimisation algorithms of 

the cost function: 
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where   is the number of channels considered in the experiment,   is the number of equation parameters, 

   is the experimental measurement for channel  , and   (      ) is the model prediction for channel  : 

       0 ,, , 16iP B A E t I t          

here   is the time corresponding to a reading from channel  ,  ( ) is the measured excitation profile,  and 

      are scaling, background level, and signal delay technical parameters respectively. Fitting 

demonstrated consistence between (16) and the data - see Fig. 3 as an example.  

We have also performed data analysis using the Bayesian inference methods for identifying plausible 

distributions of model parameters that explain our experimental observations [22].  

Formally, Bayesian inference is statistical inference in which evidence or observations are used to update 

or to infer the probability of belief in a given statement. To perform such inference we need to define a 

way to express our initial beliefs and describe the process by which some evidence or observations can be 

used to update these beliefs. Applying Bayesian inference methods requires the formal representation of 

the available knowledge. This should include the statistical model for the problem, and a priori 

information about the model parameters, as we assume that the statistical model is parametric. Our initial 

beliefs (initial state of information) about the values of parameters of each available statistical model of 

the system are, most often, uncertain and therefore distributed according to some probability density 

function  (   ). This probability distribution is called “a priori distribution of model parameters”.  

When some new information D about the modelled phenomenon is acquired, we update our beliefs 

according to Bayes' theorem. The updated distribution of our beliefs is called “a posteriori distribution of 

model parameters”. D can correspond to the data from a newly performed experiment, or new 

information published in a recent paper. Bayes' theorem defines how the posterior can be obtained from 

the prior, generally: 
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Here the probability  (     ) to produce data D with model M given parameters   is called 

“likelihood”[23,24]. 
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In this paper we consider a model defined using a convolution of discrete data with an integral function. 

In cases such as this, it is not possible to perform inference analytically due to the complexity of the 

integrals involved, and we need some numerical methods to be able to evaluate the posteriors, such as the 

Monte Carlo methods [25,26]. We employed the Sequential Monte Carlo (SMC) sampler proposed by 

Del Moral et al. [27] to find parameter posteriors for our models. This sampler employs a strategy of 

sequential importance sampling starting with an easy to sample prior distribution and eventually 

converging to the desired posterior, through a sequence of artificial intermediate distributions [28]. 

The statistical model of fluorescence considered in this paper can be defined with the following 

equations: 
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where E(t) is the measured excitation profile,   is an error associated with data dispersion, and it is 

normally distributed around the deterministic model predictions with variance equal to   .   is another 

error term associated with model mismatch, it is parameterised with unknown variance    (standard 

deviation  ). 

Background intensity parameter B was estimated as an average of the observation noise in the initial part 

of the dataset, before the excitation pulse was emitted. Six other parameters were estimated using 

methods for Bayesian parameter inference:               

The following priors were used for our six free model parameters, these priors correspond to our 

subjective belief about suitable parameter values before observing any experimental data:                                
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The parameters were considered independent a priori. Parameter posteriors for two experiments 

described in this paper were inferred using the Sequential Importance Sampling algorithm [27].  The 

likelihood of observing the experimental data from the Iα,(t) model has been defined as 

      2

0 01
, , , , , 20

N

i i ii
P F N F P F       


    

                 

 

where  2

iN F    is the Gaussian probability density function with mean 0 and variance 2

iF  . 

 

4. Results and discussion 

 

4.1. Least-squares and Bayesian inference. 

In the traditional least-squares analysis, fitting     ( ) revealed a good consistency with the data, with 

almost all    values in the range of              and randomly distributed residuals. The resulting 

parameters are shown in Table 1 and Table 2. 
 

Using methods of Bayesian inference of the parameters provided similar to the least-squares approach 

solutions and their uncertainties. We have found that the 95% credibility intervals for a posteriori (after 

considering the data) distributions of plausible parameter values were remarkably tight, suggesting that 

the problem is well defined and the parameter identity is not compromised. Naturally, the resulting 

posterior distribution is defined with a sample in 6 dimensions, which is difficult to visualise. We 

therefore display only the marginal posterior distributions of single model parameters, where the rest of 

the dimensions of the samples are integrated out.  These can be thought of as projections of the 
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multidimensional posterior distribution on individual axes. The box plots for these marginal posteriors are 

depicted in Figures 4 and 5. Note, that parameters   and   are technical parameters that correspond to a 

particular measurement setup and therefore there is little if any dependency between experimental 

conditions their posterior distributions. It is remarkable that the posterior distributions of the model 

mismatch error standard deviation  (as displayed in Figure 5) are very small. It suggests that the model 

predictions match the experimental data extremely well.  

We compare model predictions to the all experimental data, with the examples shown on Fig.6.  The 

black points in these plots correspond to actual fluorescence measurements, black lines are mean posterior 

model predictions, light grey area corresponds to the 50% credibility interval of model predictions, while 

the dark grey area corresponds to the 95% credibility interval of model predictions. 

4.2. Comparison of      ( ) with 2- and 3-exponential models. 

The key point in our discussion is comparison of the goodness of fit criteria for Iα,(t) and for the 

traditional 3-exponential function. It can be shown that both functions fit well to the experimental data, 

but we have significantly higher order of a posteriori uncertainty about the 3-exponential model due to its 

higher complexity (5 physical and 3 technical parameters), instead of Iα,(t) (3 physical and 3 technical 

parameters). While this explains why the 3-exponential function is a good representation of Trp decay, it 

may not be a proper model of its kinetics. Indeed, the Ockham’s razor principle guides us to select the 

model decay Iα,(t) as more appropriate, because it contains less parameters. This can be confirmed by 

using both Bayesian model comparison methods and a more traditional approach using the Akaike 

Information Criterion (AIC). AIC provides a means for statistical model selection that deals with the 

trade-off between the goodness of fit and the complexity of the model. The approach has been developed 

to avoid the problem of over-fitting - a ubiquitous problem in modelling physical processes when a more 

complex model will always provide a better fit to data purely because of its flexibility. AIC is widely 

accepted as a preferred model selection tool in comparison to a simple likelihood ratio test [29]. Once we 

have the results of the traditional 2
 fit to data, we can easily compute corresponding AIC scores as 

AIC=2
+2k, where k is a number of model parameters. The smaller value of the AIC indicates the 

preferred model. Naturally, a substantial improvement in 2
 fit is required to justify using an extra 

parameter in a model. In our case, AIC analysis clearly favours the newly proposed model as more 

adequate explanation of the observed decays, than the 3-exponential function. Also, the AIC values for 

the 2-exponential model, presented here as an alternative decay characterised by the same number of the 

parameters as the Iα,(t) function, show advantage of the new model. 
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Further comparison of the models has been performed on the example of the data collected at 330 nm and 

temperature 294 K. The newly proposed model explains this data well as shown in Fig. 7a, but the triple-

exponential model also provides a reasonable data prediction as can be observed in Fig. 7b. Moreover, the 

3-exponential model, similarly to the newly proposed model, has relatively small posterior values for the 

standard deviation of the model mismatch error, as can be seen in the last row in Fig.8, which suggests, 

that this model also explains well the experimental data. However, 3-exponential model is considerably 

more complex than the Iα,(t). Compare the marginal posterior distributions in Fig. 8 to the marginal 

posterior distribution for the newly proposed model depicted in Fig.9. The new model posterior over only 

six parameters is therefore defined in six dimensions, while the triple exponential one is defined in eight 

dimensions. Given that the variances of marginal distributions in Figs. 8 and 9 are comparable in size, the 

measure for the posterior of the Iα,(t)  model will therefore be much smaller than the one for the triple-

exponential model. This illustrated that we have significantly higher order of a posteriori uncertainty 

about the triple-exponential model due to its higher complexity. 

4.3. Implications for Trp photophysics 

Recovered parameters 0,  and , presented in Fig.4, provide new view on the photophysics of Trp in 

HSA. An increase in the lifetime 0 observed for the longer detection wavelenghts , supports 

fluorophore-solvent relaxation, and is accompanied by an increase in , implying a less heavy tailed 

distribution f(k), i.e. smaller spread of the transition rates k in fluorophores of lower excitation energy. 

Parameter >0 indicates the presence of a long lifetime component in the decay, and its contribution also 

increases with . The above effects can be explained by fluorophores emitting at longer wavelengths 

being either less likely to be quenched (like in the rotamer model [8]), or fluorescing at the later stage of 

solute-solvent relaxation (like in the relaxation model). The measurements vs. T, have shown an expected 

decrease in lifetime 0 as a result of increased collisions of Trp with the surroundings, which is followed 

by a slow decrease in , showing that f(k) becomes more heavy tailed, i.e. the range of the transition rates 

k becomes broader at higher temperature. As the parameter  drops, the contribution of the long lifetime 

process decreases with temperature, also due to increased collisions.  

The ability of the proposed approach to reveal changes in the rate density distributions is a clear 

advantage of the proposed method over the traditional multi-exponential analysis. However, the eqtn (13) 

itself does not constitute a detailed model of protein fluorescence kinetics. Instead, it specifies what 

information on the kinetics is included in fluorescence decay of the real sample. In this case, the 

dependence of the recovered parameters 0, α and  on  in Fig.4 suggests that the measured system 

consists of a number of sub-populations of fluorophores characterised by -dependent stable distributions 
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f(k) and h(t), which is consistent with both the existence of rotamers and their dielectric relaxation. To 

create an adequate model of HSA photophysics, we currently study the effects of different experimental 

factors on 0 and α (e.g. quenching), and on  (compounds promoting delayed fluorescence). 

More generally, fluorescence decay in heterogeneous medium does not carry full information on the 

underlying kinetics (ie fp(k) and hp(t), where p is an independent parameter or parameters of the 

experiment), but only limited information (0(p), (p) and (p)). To verify validity of a specific model of 

the kinetics, the model-derived 0(p), (p) and (p) dependencies need to be compared with the 

experimental 0,  and  values, recovered from fitting the eqtn (13) to the experimental decays for 

different p. This will enable extracting information from the fluorescence decays in a way which 

considers its statistical and limited nature. In fact, this approach can be beneficial to the whole area of 

fluorescence sensing.  

 

5. Conclusions 

Our method of describing fluorescence decay has demonstrated that simple molecular-level photophysics 

in heterogeneous environment implies non-exponential fluorescence decay, eqtn (13), of a real sample. 

The derived decay Iα,(t) is parameterised by the fluorophore lifetime 0 and index of stability α, both 

reflecting the rate density distribution f(k), and , which characterises the maximal quenching time 

density distribution function h(t). Iα,(t) is a statistically justified alternative for the dogmatic use of multi-

exponential functions. Many fluorophores rejected thus far as fluorescence lifetime sensors due to their 

“complex” kinetics, may follow the Iα,(t) behaviour, thus demonstrating their sensing potential, with α 

and  as the reporting parameters.  

In context of protein research, presented analysis shows that eqtn (13) sufficiently represents Trp 

fluorescence decay in HSA. We have also observed, that this formula fits well to fluorescence decays of 

other protein, simple peptides and some fluorophores (with >0 in almost all cases).  This finding, 

combined with fluorescence decay modelling, can impact on our understanding of the numerous 

biomolecular systems, where the expected progress has not been achieved, because traditional 

descriptions were not fully conclusive.  
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Table 1. Effect of temperature, =330 nm. 

T/K 0   2
 

275 4.988 0.8918 0.0608 0.997 

279 4.902 0.8865 0.052 1.091 

284 4.787 0.8813 0.0553 1.088 

288 4.609 0.8725 0.0535 1.042 

293 4.413 0.8635 0.0352 1.109 

299 4.184 0.9505 0.0043 1.127 

304 3.96 0.8444 0.0401 1.114 

308 3.753 0.8424 0.0058 1.043 

313 3.5864 0.8446 0.0104 1.043 

319 3.355 0.8430 0.0208 1.053 

 

 

Table 2. Effect of the detection wavelength , temperature T=294 K. 

/nm 0 α  2 

325 4.184 0.8360 0.0049 1.428 

330 4.529 0.8632 0.0518 1.137 

335 4.7172 0.8769 0.0623 1.024 

340 4.872 0.8877 0.0673 1.029 

345 4.988 0.8958 0.0721 1.030 

350 5.107 0.9059 0.0814 1.100 

355 5.191 0.9110 0.0837 1.067 
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Table 3. Comparison of AIC values obtained from fitting I,(t) , 2-exponential and a 3-exponential 

functions to the experimental data. For the 2- and  3-exponential functions, a commercial numerical 

procedure (DAS6 software from Horiba Jobin Yvon IBH Ltd., Glasgow, U.K.) has been used.  

T/K /nm AIC(I,(t)) AIC(2-exp) AIC(3-exp) 

275  6.999 7.096 11.038 

279  7.091 7.150 11.030 

284  7.088 7.161 11.020 

288  7.042 7.154 11.065 

293 330 7.109 7.219 11.143 

299  7.127 7.230 11.167 

304  7.114 7.260 11.079 

308  7.043 7.187 11.036 

313  7.043 7.205 11.031 

319  7.053 7.229 11.057 

 325 7.428 8.403 12.093 

 330 7.137 7.350 11.099 

 335 7.024 7.119 10.996 

294 340 7.029 7.108 11.018 

 345 7.030 7.065 11.009 

 350 7.100 7.105 11.065 

 355 7.067 7.085 11.009 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

18 
 

Figure Captions: 

Fig.1. Fluorescence decay Iα,(t) for the different parameters α and  (a), decay Iα,0(t) for α=0.2, 0.5, 0.7, 

and 1(b), and decay I1,(t) for =0, 0.3, 0.5 and 0.8 (c). 

Fig.2. The lifetime distributions g() recovered from the MEM method applied to the synthetic decay 

simulated for the Iα,(t) model. The parameters used are: 0=2 ns, =0.0001 and α=1, and then for the 

same 0, =0.1 and =1.0-0.8 (a), and 0=2 ns, α=0.9 and =0.05-0.3 (b). 

Fig.3. Example prompt function, fluorescence decay and the residuals obtained for Trp in HSA, at the 

temperature T=294 K and the detection wavelength = 335 nm.  Time correlation was 0.0141638 

ns/channel. The model decay is I


(t). The 
2
 value for this case is 1.024.

 

 

Fig.4. The fitted parameters 0, , and  of the fluorescence decay of Trp in HSA for different detection 

wavelengths  and fixed temperature T=294 K  (left), and for different temperatures T and fixed detection 

wavelength =330 nm (right). The dash in the middle is the median of the estimate sample, the box 

corresponds to 25-75% percentiles and the whiskers show 2.5-97.5% percentiles of the estimate sample.  

 

Fig.5. The fitted parameters A, , and  of the fluorescence decay of Trp in HSA for different detection 

wavelengths  and fixed temperature T=294 K (left), and at different temperatures T and fixed detection 

wavelength =330 nm (right). The dash in the middle is the median of the estimate sample, the box 

corresponds to 25-75% percentiles and the whiskers show 2.5-97.5% percentiles of the estimate sample.  

 

Fig.6. Examples of model predictions compared to the experimental decays. Data shown were collected 

at: the wavelength of 325 nm and temperature 294 K (a), the wavelength of 355 nm and temperature 294 

K (b), the wavelength of 330 nm and temperature 275 K (c), the wavelength of 330 nm and temperature 

319 K (d). 

Fig.7.  Iα,(t) (a) and 3-exponential (b) model predictions compared to the experimental decay collected at 

the wavelength of 330 nm and temperature 294 K. 

Fig.8.  One- and two-dimensional marginal distributions of the parameter posterior for the triple-

exponential model when inferred from the experimental data measured at the wavelength of 330 nm and 

temperature 294 K.        and    are mean decay times for three exponential fluorescence components. 
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       and    are corresponding scaling factors.   is the technical time shift parameter, and   is the 

standard deviation of the model mismatch error. 

Fig.9.  One- and two-dimensional marginal distributions of the parameter posterior for the Iα,(t)  model 

when inferred from the experimental data measured at the wavelength of 330 nm and temperature 294 K . 
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