Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Wavelength-tunable and white light emission from polymer-converted micropixellated InGaN ultraviolet light-emitting diodes

Heliotis, G. and Gu, E. and Griffin, C. and Jeon, C.W. and Stavrinou, P.N. and Dawson, M.D. and Bradley, D.D.C. (2006) Wavelength-tunable and white light emission from polymer-converted micropixellated InGaN ultraviolet light-emitting diodes. Journal of Optics A: Pure and Applied Optics, 8 (7). S445-S449. ISSN 1464-4258

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We report the use of light-emitting conjugated polymer materials to wavelength-convert the emission from a two-dimensional array of micropixellated InGaN light-emitting diodes (LEDs). We demonstrate hybrid organic/inorganic light-emitting devices that can operate across the entire visible spectrum, and we also fabricate white-emitting versions of these devices by employing single layers of carefully adjusted polymer blends in which cascade non-radiative energy transfer occurs between the constituent materials. Additional colours may be easily obtained by tuning the composition of the polymer blends. Our work demonstrates that the combination of conjugated polymers and UV micro-LED arrays provides an attractive approach to developing microscale wavelength-tunable light sources and may provide a route to low-cost full-colour microdisplays and other instrumentation devices.

Item type: Article
ID code: 5316
Keywords: hybrid devices, conjugated polymers, polyfluorenes, wavelength conversion, optics, photonics, Optics. Light, Atomic and Molecular Physics, and Optics
Subjects: Science > Physics > Optics. Light
Department: Faculty of Science > Institute of Photonics
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 06 Feb 2008
    Last modified: 04 Sep 2014 17:03
    URI: http://strathprints.strath.ac.uk/id/eprint/5316

    Actions (login required)

    View Item