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Abstract

The spectral radius of the next generation matrix provides an expression for the basic
reproduction number. Instead of calculating the dominant eigenvalue of the characteristic
equation corresponding to the next generation matrix, a threshold parameter can be
obtained by handling the coefficients of this equation. Here we prove two conjectures
presented in [9].
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1 Introduction

In [9], from the Jacobian and next generation matrices, the stability of the disease free equi-
librium (DFE) was assessed. Briefly, the application of the Routh–Hurwitz criteria to the
coefficients of the characteristic equation corresponding to the Jacobian matrix F evaluated at
the DFE resulted in the determination of a possible basic reproduction number R†

0. But, the
spectral radius corresponding to the next generation matrix F1V

−1 resulted in, for instance,

ρ (F1V
−1) =

√

R†
0, where R†

0 is that obtained from the Jacobian method and F = F1 −V , with

F1 being the transmission matrix and V , the transition matrix [1], [2]. In both methods, if
R†

0 < 1 or ρ (F1V
−1) < 1, the DFE is locally asymptotically stable (LAS).
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Instead of calculating the spectral radius of the next generation matrix ρ (F1V
−1), a thresh-

old parameter can be obtained from the characteristic equation corresponding to the matrix
F1V

−1. The absolute sum of the negative coefficients is the threshold. With respect to this
approach, in [9] two conjectures were presented without proofs. Here, we present the proofs.

2 Proofs of two conjectures

Conjecture 1: Let the characteristic polynomial of order n corresponding to the next gener-
ation matrix F1V

−1 be written as

Λ (λ) = λn − an−1λ
n−1 − · · · − a1λ − a0, (1)

with ai ≥ 0, for i = 0, 1, 2, . . . , n− 1. Let R0 denote the spectral radius of the next generation
matrix, that is, R0 = ρ(F1V

−1), and

R∗
0 = an−1 + · · ·+ a1 + a0. (2)

Then R∗
0 is a threshold value for the disease to take off or die out in the sense that:

(i) R∗
0 > 1 if and only if R0 > 1, (3)

(ii) R∗
0 = 1 if and only if R0 = 1, (4)

and

(iii) R∗
0 < 1 if and only if R0 < 1. (5)

Proof : If all ai = 0, the result is obvious. Otherwise the elements of the next generation
matrix F1V

−1 are non-negative as they correspond to expected numbers of different types of
infected individuals. Hence, by the Perron Frobenius Theorem [8] it has a non-negative right
eigenvector whose eigenvalue is R0, and R0 is the largest real eigenvalue. Additionally, the
characteristic polynomial (1) is such that the number of sign differences between consecutive
nonzero coefficients is one. Hence, according to Descartes rule of signs, there is exactly one
positive root. However, writing

Λ(∞) = limλ→∞ Λ(λ),

(i) if R∗
0 > 1, we have Λ (1) < 0 and Λ (∞) = ∞, so Λ (λ) has a root in (1,∞). Hence, the

unique largest real eigenvalue R0 corresponding to the characteristic polynomial (1) is R0 > 1.

(ii) if R∗
0 = 1, we have Λ (0) < 0, Λ (1) = 0 and Λ (∞) = ∞, so the unique positive root of

Λ (λ) = 0 is λ = 1, and R0 = 1.

(iii) if R∗
0 < 1, we have Λ (0) < 0 and Λ (1) > 0, so Λ (λ) has a root in (0, 1). Hence, the unique

largest real eigenvalue R0 corresponding to the characteristic polynomial (1) is R0 < 1.

Therefore R∗
0 is a valid threshold parameter that crosses the value one exactly when R0 does

and determines the disease behaviour in the same way that R0 does. The application of the
Routh–Hurwitz criteria to the characteristic equation corresponding to the Jacobian matrix
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F = F1 − V [9], showed that the DFE is LAS if R†
0 < 1, (equivalently R0 < 1, see Section 3 of

this paper), and unstable if R†
0 > 1, equivalently R0 > 1. �

The above conjecture was obtained considering a single infection. Another conjecture deals
with coinfection.

Conjecture 2: When two infections occur, let the characteristic polynomial corresponding to
the next generation matrix F1V

−1 be written as

Λ (λ) = Λ1 (λ) Λ2 (λ) − Λ3 (λ) , (6)

where Λ1 (λ) and Λ2 (λ), given by equation (1), are the characteristic polynomials of degree n
corresponding to single infection by infections 1 and 2 respectively, and Λ3 (λ) is the character-
istic polynomial of degree n − 1 involving coinfection given by

Λ3 (λ) = a3
n−1λ

n−1 + · · ·+ a3
1λ + a3

0,

with a3
i ≥ 0, for i = 0, 1, 2, . . . , n − 1.

(a) If Λ3 (λ) ≡ 0, then R∗
0 = max{R1∗

0 , R2∗
0 } is a threshold value for disease to take off or die

out in the sense that conditions (3)-(5) hold.

(b) If Λ3 (λ) 6≡ 0, then define R∗
3 = Λ3 (1) = a3

n−1 + · · · + a3
1 + a3

0, analogous to R∗
0 defined by

(2), but for coinfection, and

R∗
t =

R∗
3

(1 − R1∗
0 ) (1 − R2∗

0 )
, (7)

(possibly infinite). Then

R∗
0 = max{R1∗

0 , R2∗
0 , R∗

t} (8)

(also possibly infinite) is a threshold value for disease to take off or die out in the sense that
conditions (3)-(5) hold.

Proof : (a) First, when Λ3 (λ) ≡ 0, Conjecture 1 can be applied for each infection. As R0 is
the largest real positive eigenvalue of the characteristic equation,

R0 = max{R1
0, R

2
0}

when the result follows from Conjecture 1.

(b) When Λ3 (λ) 6≡ 0, the product Λ1 (λ) Λ2 (λ), one term of the characteristic polynomial (6),
is such that Λ1 (0) Λ2 (0) = a1

0a
2
0 ≥ 0. The other term Λ3 (λ) is a strictly increasing function (or

a constant, if Λ3 (λ) = a3
0), with Λ3 (0) = a3

0. Recall that Λi(λ) has a unique positive root Ri
0

for i = 1, 2. Hence, one of the roots, rs (which can be negative if a1
0a

2
0 < a3

0), of Λ (λ) = 0 is less
than or equal to the minimum of the roots R1

0 and R2
0 of Λ1(λ) = 0 and Λ2(λ) = 0 respectively

and another (rb) is strictly greater than max{R1
0, R

2
0}. Again as F1V

−1 is a next generation
matrix its elements are non-negative and R0 is its largest real eigenvalue. Hence R0 ≥ rb is
strictly greater than max{R1

0, R
2
0}. By Lemma 1 (below), R0 = rb, so

R0 > max{R1
0, R

2
0}. (9)
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If R∗
0 > 1 then either (i) max{R1∗

0 , R2∗
0 } > 1, (ii) max{R1∗

0 , R2∗
0 } = 1 and R∗

t > 1, or (iii)
max{R1∗

0 , R2∗
0 } < 1 and R∗

t > 1. In the first case, by Conjecture 1 max{R1
0, R

2
0} > 1 so R0 > 1

by (9). In the second case similarly, max{R1
0, R

2
0} = 1, so R0 > 1 by (9). In the third case

Λ(1) = Λ1(1)Λ2(1)

[

1 −
Λ3(1)

Λ1(1)Λ2(1)

]

,

= (1 − R1∗
0 )(1 − R2∗

0 )(1 − R∗
t ),

where R∗
t is given by equation (7), and Λ(∞) = ∞ due to the assumption that the degree of

the polynomial Λ3(λ) is less than the other two. As R∗
t > 1 we have Λ(1) < 0 and R0 lies in

(1,∞) so R0 > 1.

If R∗
0 = 1 and max{R1∗

0 , R2∗
0 } = 1 then R∗

t = ∞ which contradicts R∗
0 = 1. Hence

max{R1∗
0 , R2∗

0 } < 1 and R∗
t = 1 so arguing as in the third case above Λ(1) = 0. Moreover

by Conjecture 1, max{R1∗
0 , R2∗

0 } < 1 implies that max{R1
0, R

2
0} < 1 so by using Lemma 1,

R0 = 1. Hence we have shown that R∗
0 = 1 implies that R0 = 1.

If R∗
0 < 1 then max{R1∗

0 , R2∗
0 } < 1 and R∗

t < 1, hence Λ(1) > 0. Again by Conjecture 1,
max{R1

0, R
2
0} < 1 and by Lemma 1 the unique root of Λ(λ) in (max{R1

0, R
2
0},∞) is less than

one. So we have shown that R∗
0 < 1 implies that R0 < 1. �

So once again R∗
0 is a valid threshold parameter that crosses the value one exactly when

R0 does and determines the disease behaviour in the same way that R0 does. The condition
max{R1∗

0 , R2∗
0 , R∗

t} < 1 can be written as

max{R1∗
0 , R2∗

0 } < 1 − R∗
3 and R∗

t < 1

(see Lemma 2).

Lemma 1 Λ(λ) has exactly one positive real root in (max{R1
0, R

2
0},∞).

Proof Note that at Ri
0, i = 1, 2, Λ(Ri

0) = −Λ3(R
i
0) < 0. Hence Λ (max{R1

0, R
2
0}) < 0 and

Λ(∞) = ∞ so there is a positive real root of Λ(λ) in (max{R1
0, R

2
0},∞). Note also that

Λi(λ) = λn

(

1 −
ai

n−1

λ
−

ai
n−2

λ2
− · · · −

ai
0

λn

)

,

and that for λ ≥ Ri
0 both λn and

(

1 −
ai

n−1

λ
−

ai
n−2

λ2
− · · · −

ai
0

λn

)

are positive monotone increasing functions, so Λi(λ) is positive monotone increasing. Hence
Λ1(λ)Λ2(λ) is also positive monotone increasing in (max{R1

0, R
2
0},∞). But

Λ(λ) = Λ1(λ)Λ2(λ)

[

1 −
Λ3(λ)

Λ1(λ)Λ2(λ)

]

= Λ1(λ)Λ2(λ)

[

1 −
Λ3(λ)/λ2n

{Λ1(λ)/λn}{Λ2(λ)/λn}

]

.
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In (max{R1
0, R

2
0},∞), Λ1(λ)/λn and Λ2(λ)/λn are both monotone increasing and strictly

positive and Λ3(λ)/λ2n is strictly monotone decreasing and strictly positive, hence

1 −
Λ3(λ)/λ2n

{Λ1(λ)/λn}{Λ2(λ)/λn}

is strictly monotone increasing. So Λ(λ) is strictly monotone increasing in (max{R1
0, R

2
0},∞).

The result follows. �

Lemma 2 The condition max{R1∗
0 , R2∗

0 , R∗
t } < 1 is equivalent to max{R1∗

0 , R2∗
0 } < 1 − R∗

3 and
R∗

t < 1.

Proof The statement is obvious if R∗
3 = 0 so suppose that R∗

3 > 0. When max{R1∗
0 , R2∗

0 } < 1,
R∗

t , given by equation (7), is a strictly increasing function in R1∗
0 and R2∗

0 , with value R∗
3 when

R1∗
0 = 0 and R2∗

0 = 0. Hence, R∗
t < 1 implies that R∗

3 < 1.
Consider R2∗

0 = 1 − R∗
3 + ε, with |ε| ≈ 0. Then

R∗
t =

R∗
3

(1 − R1∗
0 ) [1 − (1 − R∗

3 + ε)]
=

R∗
3

(1 − R1∗
0 ) (R∗

3 − ε)
.

When R1∗
0 = 0, we have

R∗
t =

R∗
3

R∗
3 − ε

{

> 1, if ε > 0,
< 1, if ε < 0.

We deduce that in general (provided that max{R1∗
0 , R2∗

0 } < 1) if R2∗
0 ≥ 1−R∗

3, then R∗
t ≥ 1, and

max{R1∗
0 , R2∗

0 , R∗
t} < 1 is not satisfied. Similarly if R1∗

0 ≥ 1−R∗
3, then max{R1∗

0 , R2∗
0 , R∗

t} ≥ 1.
Hence, max{R1∗

0 , R2∗
0 , R∗

t} < 1 implies that max{R1∗
0 , R2∗

0 } < 1 − R∗
3, with R∗

3 < 1 and R∗
t < 1.

On the other hand if max{R1∗
0 , R2∗

0 } < 1−R∗
3 and R∗

t < 1, then clearly max{R1∗
0 , R2∗

0 , R∗
t} < 1.

�

3 Conclusion

In this brief paper we have proved two conjectures. For the second conjecture the case Λ3(λ) ≡ 0
may describe infections where infection with each disease or strain individually does not influ-
ence the infection with the other disease or strain. Another possibility is when each infection
confers complete immunity against the other. In this case (Λ3(λ) ≡ 0) both infections die
out when R∗

0 = max{R1∗
0 , R2∗

0 } < 1. On the other hand, the condition for co-existence of two
non-interacting infections is given by min{R1∗

0 , R2∗
0 } > 1.

However for the case Λ3(λ) 6≡ 0, we would expect that coinfection can occur, even when
max{R1∗

0 , R2∗
0 } < 1, provided that R∗

t > 1. In other words, a sufficiently high interaction
between strains sustains both infections and the DFE is unstable. For this reason, besides
max{R1∗

0 , R2∗
0 } < 1 we must have R∗

t < 1, or R∗
0 = max{R1∗

0 , R2∗
0 , R∗

t} < 1, in order for the
DFE be LAS. An example of coinfection where the DFE is LAS when the largest real eigenvalue
R0 of F1V

−1 is strictly less than one is found in [6]. Indeed Raimundo et al. [6], dealing with
coinfection with drug sensitive and drug resistant tuberculosis, showed that the DFE is LAS if
max{R1

0, R
2
0} < 1 − R∗

3 and R∗
t < 1, with R∗

3 < 1.
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In spectral radius theory, the dominant eigenvalue of the characteristic equation of the next
generation matrix F1V

−1, which is the spectral radius ρ(F1V
−1), determines the stability of the

DFE in the sense that:

(i) ρ(F1V
−1) < 1 if and only if all eigenvalues of the matrix F = F1 − V have strictly

negative real part,

(ii) ρ(F1V
−1) = 1 if and only if zero is an eigenvalue of F ,

and

(iii) ρ(F1V
−1) > 1 if and only if F has a strictly positive real eigenvalue.

In the proofs of our two conjectures, using the same characteristic equation corresponding
to the next generation matrix F1V

−1, we developed a new threshold R∗
0, given by equations

(2) and (8), which was determined to be a threshold equivalent to R0 in that the DFE was
LAS if R∗

0 < 1 and unstable if R∗
0 > 1. These new definitions are not spectral radii, and we

therefore cannot directly establish the stability or instability of the DFE from that property.
However in [9], the stability of the DFE was assessed by the Routh-Hurwitz criteria applied
to the Jacobian matrix F (if all Routh-Hurwitz criteria are satisfied, then all eigenvalues have
strictly negative real parts). But the arguments above show that the values R∗

0 given in (2)
and (8) are equivalent to R†

0 as thresholds determining the stability of the system and thus
equivalent to the Jacobian method in assessing stability. Hence for both (2) and (8) here the
disease is LAS if R∗

0 < 1 and unstable if R∗
0 > 1. Thus the stability threshold from the Jacobian

method is also the same as the results given by (2) and (8).
We are grateful to a referee for pointing out that this method has potential applications in

other disease models, in particular brucellosis in sheep and cattle.
Sun and Zhang [7] discuss a sheep brucellosis model with immigration. From p.339 the

corresponding characteristic equation is

λ3 − A11λ
2 = 0,

where R∗
0 = R0 = A11 = S0(d+m+α)

(d+m)(d+α)

(

β + β1k

nτ+ǫ

)

, from equation (2). Nie et al. [5] discuss a
different model for cattle brucellosis in Jinlin province, China, and there our method can be
applied in a similar fashion.

Li et al. [3] discuss a model for the spread of brucellosis between sheep and cattle in a
public farm. From the matrix FV −1 on p.586 of [3] the corresponding characteristic equation
is

Λ(λ) = (λ − A11) (λ − A22)λ4 − A12A21λ
4 = 0,

where A11, A22, A12 and A21 are constants as defined by [3], with R1
0 = A11 and R2

0 = A22.
For the models with one strain only

Λ1(λ) = (λ − A11)λ
2,

and Λ2(λ) = (λ − A22)λ
2,

so the characteristic equations satisfy the hypotheses of Conjecture 2 with Λ3(λ) = A21A12λ
4.

Hence R1
0 = R1∗

0 , R2
0 = R2∗

0 and
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R∗
t =

A12A21

(1 − R1
0) (1 − R2

0)
.

The stability condition is equivalent to R∗
0 = max {R1∗

0 , R2∗
0 , R∗

t} < 1, or equivalently, max {R1∗
0 , R2∗

0 } <
1 − A12A21 and R∗

t < 1.
Li et al. [4] discuss an alternate model for the spread of brucellosis amongst sheep and cattle

in China. Here the characteristic equations do not quite satisfy the hypotheses of Conjecture
2 but a simple modification of the arguments in this paper show that the same method can be
applied similarly as in [3].
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