Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Erbium-doped fiber laser tuning using two cascaded unbalanced Mach-Zehnder interferometers as intracavity filter: numerical analysis and experimental confirmation

Calvez, S. and Rejeaunier, X. and Mollier, P. and Goedgebuer, J.P. and Rhodes, W.T. (2001) Erbium-doped fiber laser tuning using two cascaded unbalanced Mach-Zehnder interferometers as intracavity filter: numerical analysis and experimental confirmation. Journal of Lightwave Technology, 19 (6). pp. 893-898. ISSN 0733-8724

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We propose a new method for tuning an Er3+-doped continuous-wave fiber-ring laser. We present a novel numerical model and confirm the model with experimental results. The numerical model relies on the implementation of the analytical solution of signal propagation over small (elemental) segments of amplifier fiber rather than using the usual Runge-Kutta algorithm. The validity of the model is verified by the good agreement between computer results and experimental data. Experiments demonstrating a 11.2-nm wavelength tuning range have been conducted using an electrooptic intracavity filter composed of two cascaded unbalanced Mach-Zehnder interferometers (MZIs) integrated in lithium niobate, The numerical analysis shows that the tuning range obtained is limited by the combination of gain shape and filter characteristics. Increased tuning range can be obtained by decreasing losses or by using a more selective filter.