Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Influence of composition diffusion on the band structures of InGaNAs/GaAs quantum wells investigated by the band-anticrossing model

Qiu, Y.N. and Rorison, J.M. and Sun, H.D. and Calvez, S. and Dawson, M.D. and Bryce, A.C. (2005) Influence of composition diffusion on the band structures of InGaNAs/GaAs quantum wells investigated by the band-anticrossing model. Applied Physics Letters, 87 (23). ISSN 0003-6951

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We investigate the influence of quantum-well intermixing (QWI) on the electronic band structure of GaInNAs/GaAs multiquantum wells. The band structures and optical transitions have been calculated based on the band-anticrossing (BAC) model and Fick's interdiffusion law for both intermixed and nonintermixed samples, respectively. The calculated results are consistent with the true optical transitions observed by photoluminescence excitation spectroscopy and secondary ion mass spectroscopy. Our investigation indicates that BAC model is valid for interdiffused quantum wells and verifies that the QWI process in GaInNAs/GaAs multiquantum wells is induced mainly by the interdiffusion of In-Ga between the quantum wells and barriers.