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Abstract
With the emergence in the next few years of a new breed of high power laser facilities, it is
becoming increasingly important to understand how interacting with intense laser pulses affects
the bulk properties of a relativistic electron beam. A detailed analysis of the radiative cooling of
electrons indicates that, classically, equal contributions to the phase space contraction occur in
the transverse and longitudinal directions. In the weakly quantum regime, in addition to an
overall reduction in beam cooling, this symmetry is broken, leading to significantly less cooling in
the longitudinal than the transverse directions. By introducing an efficient new technique for
studying the evolution of a particle distribution, we demonstrate the quantum reduction in beam
cooling, and find that it depends on the distribution of energy in the laser pulse, rather than just
the total energy as in the classical case.

1. Introduction

The emergence over the next few years of a new generation of ultra-high power laser facilities, spearheaded by
the extreme light infrastructure (ELI) [1], represents amajor advance in the possibilities afforded by laser
technology. In addition to important practical applications, these facilities will, for thefirst time, allow
investigation of qualitatively new physical regimes. Among thefirst effects to be exploredwill be radiation
reaction.

Radiation reaction—the recoil force on an electron due to its emission of radiation—remains a contentious
area of physics aftermore than a century of investigation. The standard equation describing radiation reaction
(the so-called LAD equation, after its progenitors Lorentz, Abraham, andDirac [2–4]) for a particle ofmassm
and charge q in an electromagnetic field F reads

τΔ τ= + ⃛ = − + ⃛ −( )x
f

m
x

q

m
F x x x x x¨ ˙ ¨ ¨ ˙ , (1)a

a
a

b
b a

b
b a

b
b aext

where = −f qF ẋa a
b

b
ext is the Lorentz force. Here, the constant τ π≔ q m62 is the ‘characteristic time’ of the

particle3 and an overdot denotes differentiationwith respect to proper time. Indices are raised and loweredwith
themetric tensor η = −diag( 1, 1, 1, 1), and repeated indices are summed from0 to 3. The ẋ-orthogonal
projection Δ δ≔ + x x˙ ˙a

b b
a a

b ensures that ẍ is orthogonal to ẋ, preserving the normalization condition
= −x x˙ ˙ 1a

a (equivalently themass shell condition, = −p p ma
a

2, where γ= =p mx m p˙ ( , )a a ).Wework in
Heaviside–Lorentz units with c= 1.
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The characteristic time τ = r c2 3 can be interpreted as the time taken for light to travel across the classical radius of the particle,

πϵ=r q mc42
0

2. For an electron, τ = × −6.3 10e
24 s, corresponding to = × −r 2.8 10e

15 m. Since radiation damping is proportional
to τ, radiation reaction effects will typically bemore prominent for electrons, forwhich = −q e and =m me , than for particles with
largermass.
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Equation (1)may be unpacked and expressed in terms of the three-momentum as
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where γ = + mp1 2 2 and γ γ=t t mp pd d ( · d d ) 2.
Despite numerous independent derivations of equation (1), either on the basis of energy–momentum

conservation [4, 5] or as the Lorentz force due to the particle’s (regularized) self-field [6], it is subject to
numerous difficulties; see the recent review [7] for an account of these problems and proposed solutions. The
mostwidely used alternative to LAD is that introduced by Landau and Lifshitz [8], by treating the self-force as a
small perturbation about the applied force and retaining terms to leading order in the small parameter τ:
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m
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It is often claimed that (3) is valid provided only that quantum effects can be ignored, and though a rigorous
demonstration remains elusive there ismounting evidence that this is indeed the case [9, 10]. Note that
equation (3) can also be presented in terms of the electric andmagnetic fields, E and B, as [8, 11]
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where the total time derivative acting on the E B, fields is γ= ∂ ∂ +t t m pd d (1 ) · .
Under the conditions expected at ELI, the caveat ‘provided that quantum effects can be ignored’ is pertinent.

Quantumeffects are typically negligible if the electric field observed by the particle, Ê, ismuch less than the
Sauter–Schwinger field [12, 13] typical ofQEDprocesses, that is provided

χ ≔ = ≪e
m

F F x x
E

E
˙ ˙

ˆ
1, (5)

e

ab
ac b

c

S
2

where = = ×E m c e 1.32 10S e
2 3 18 Vm−1 is the Sauter–Schwinger criticalfield. For 1 GeV electrons in a laser

pulse of intensity 1022W cm−2 (parameters obtainable at ELI), χ ∼ 0.8 and quantum effects cannot be ignored.
A completeQED treatment of radiation reaction is difficult to implement and problematic even to define but,
provided χ remains small, a semi-classicalmodification to (3) should be valid [14].

An important difference between the classical and quantumpictures of radiation emission can be seen in the
radiation spectrum. Classically, a charged particle can radiate arbitrarily small amounts of energy at all
frequencies. However, in the quantumpicture, the particlemust radiate entire quanta of energy in the formof
photons. Thus, the energy (frequency) of the emitted photons is limited by the energy of the particle. This
suppresses emission at high frequencies, and introduces a cut-off in the spectral range of the emitted radiation
[14]. As such, it is expected that the effects of radiation reaction are overestimated by classical theories in regimes
where quantum effects become important [15], since they consider the particle to be radiating at all frequencies.

In order to account for this reduction in the effects of radiation reaction relative to the Landau–Lifshitz
equation ofmotion, we followKirk et al [16] and scale the radiation reaction force by the function χg ( ):

χ τ Δ= − − ∂ −x
q

m
F x g

q

m
F x x
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m
F F x¨ ˙ ( ) ˙ ˙ ˙ . (6)a ab
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The full expression for χg ( ) involves a non-trivial integral over Bessel functions. Tomake this tractable, we use
an approximation introduced by Thomas et al [17],

χ χ χ χ= + + +
−( )g ( ) 1 12 31 3.7 . (7)2 3 4 9

It can be clearly seen that, in the classical limit χ → 0, we have χ →g ( ) 1, recovering the classical equation of
motion (3). Aswemove into amore strongly quantum regime, the quantumnonlinearity parameter χ increases
and the scaling function χg ( )decreases, in turn reducing the effects of radiation reaction. Themodel essentially
reduces to a rescaling of the characteristic time of the particle, τ χ τ→ g ( ) , which can also be applied to
equation (4). For χ ∼ 1, the stochasticity of quantum emission becomes important, and the semi-classical
model is no longer applicable [18]. At this point, χ ≃g ( ) 0.18, which corresponds to a significant reduction in
the effects of radiation reaction.
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It is generally accepted that radiation reaction effects will bemore readily observed in the behaviour of
particles than in the radiation they emit [17, 19]. As such, it is important to be able to accurately determine the
distribution of a bunch of particles evolving according to (3) or its semi-classical extension (6). Usually this
would involve solving aVlasov equation [20] or following the evolution of very large numbers of particles [21],
either of which is computationally very intensive.

In this paperwe investigate beam cooling of a particle bunch due to classical and semi-classicalmodels of
radiation reaction. In section 2we present a detailed discussion of longitudinal and transverse phase space
contraction of the particle distribution, alongwith an analytical solution of the classical Vlasov equation. The
longitudinal particle distribution is introduced. Since the semi-classical Vlasov equation has no analytical
solution, in section 3we introduce a newmethod of accurately reconstructing the particle distribution from the
trajectories of a relatively small number of particles. Classical predictions using thismethod are compared to the
analytical solutionwith excellent agreement. Themethod is then applied in section 4 in order to compare
classical and semi-classical predictions for an electron beam collidingwith an intense laser pulse. Finally, we
conclude by summarizing ourfindings in section 5.

2. Particle distribution andphase space contraction

The evolution of a particle beam can be described by theVlasov equation for the particle distribution ℱ x u( , ),
where γ=u u( , )a is the four-velocity. Position and velocity are considered as independent phase space
variables. TheVlasov equation for ℱ can be expressed as

βℱ = ℱ + ℱ = 
s s

d

d
( )

d

d
0, (8)s

⎡
⎣⎢

⎤
⎦⎥

where  is the phase-space volume element and β x u( , )s describes the rate of change (i.e. expansion or
contraction) of with proper time s. (Technically, βs is the phase-space divergence of the vector field

= ∂ ∂ + ∂ ∂X u x ua a I I (where  is the acceleration) associatedwith the flow sd d , given by the Lie derivative
 β= X s , see [20].) Capital Latin indices take three values. Unlike the Liouville equation (or the case with no
radiation reaction) the phase-space volume element is not preserved by the flow, β ≠ 0s .

To facilitate investigation of the interaction of a particle bunchwith a laser pulse, we introduce the (null)
wavevector k such that the phase of the pulse is

ϕ ω= − = −k x t k x· · . (9)

The orthogonal (transverse) vectors ϵ λ, satisfying

ϵ λ ϵ λ ϵ λ= = = = =k k1 and · · · 0, (10)2 2

togetherwith k and the null vectorℓ (defined to satisfy ℓ ϵ ℓ λ= =· · 0 and ℓ = −k · 1) form a basis. In
addition, the coordinates

ξ ϵ σ λ ψ ℓ= = = −x x x· , · and · (11)

are also defined, alongwith the corresponding velocities ϕu , ξu , σu and ψu . However, ψu is not independent and

may be found from the normalization condition = + − = −ξ σ ϕ ψu u u u u u2 1a
a

2 2 .We note that Greek
subscripts are used only as labels and are not free indices.

For a planewavewith arbitrary polarization, the electromagnetic field tensor Fdepends on spacetime only
through the phaseϕ, and takes the form

ϕ ϵ ϵ ϕ λ λ= − + −ϵ λ( ) ( )q

m
F a k k a k k( ) ( ) , (12)a

b
a

b
a

b
a

b
a

b

where the functions ϕϵ λa ( ), are dimensionlessmeasures of the electric field strength in the ϵ, λ direction. The

corresponding electric andmagnetic fields are ϵ λω ϕ ϕ= +ϵ λm q a aE ( )[ ( ) ˆ ( ) ˆ]and ω= ×B k E , where the

orthogonal unit three-vectors ϵ λˆ, ˆ satisfy ϵ λ= =k k· ˆ · ˆ 0.
In a similarmanner, we assume that the particle distribution also depends on spacetime only through the

phaseϕ, such that ϕℱ = ℱ ϕ ξ σx u u u u( , ) ( , , , ). TheVlasov equation is thenwritten

 
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⎠
⎟⎟

where ∈ ϕ ξ σu u u u{ , , }I , and the accelerations    ∈ ϕ ξ σ{ , , }I follow from the single-particle equations
ofmotion. Dividing through by ϕu , we have
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
ϕ

β βℱ + ℱ = = ∂
∂ ϕu u
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d
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⎞
⎠
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The quantity β is responsible for any phase space contraction (β < 0) or expansion (β > 0) of the particle
distribution, and the associated change in electron entropy [22].

For a highly relativistic particle beam collidingwith a laser pulse (the scenario inwhich radiation reaction
effects aremost prominent), we aremainly interested in the dependence of ℱ onϕ and ϕu . An advantage of the
coordinate system (9)–(11) is that it decouples the longitudinal from the transverse velocity in the Lorentz
invariantmeasure, γ = ξ σ ϕ ϕx u u u ud ˙ d d d3 . Hencewe can define the longitudinal distribution

∫ϕ = ℱϕ ξ σ


( )f u u u, d d , (15)
2

which satisfies the reduced Vlasov equation
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u u
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d
0, where . (16)
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Here, β∥describes the longitudinal phase space contraction. The transverse contribution is then
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Note that this reduction to the longitudinal distribution is purely a consequence of the coordinate system, and
does not rely on the planewave assumption.

It is at this point that a decisionmust bemade as to the appropriate single-particle equations ofmotion.
While there aremany classicalmodels for radiation reaction [7], we start by considering the Landau–Lifshitz
equation given by (3), beforemoving on to the semi-classical extension (6). This is in partmotivated by the
existence of an analytical solution to the single-particle Landau–Lifshitz equation [23]. In our coordinates, the
Landau–Lifshitz equations in the planewave (12) are





τ

τ τ

τ τ

= −

= − + ′ −

= − + ′ −

ϕ ϕ
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a u

u a u a a u u

u a u a a u u

ˆ ,

ˆ ,

ˆ , (18)

2 3

2 2

2 2

where ϕ ϕ ϕ= +ϵ λa a a( ) ( ) ( )2 2 2 and prime denotes differentiationwith respect toϕ. Inserting these equations
into (16) and (17), wefind for the classical case

β β τ= = − ⩽ϕ∥ ⊥ a uˆ ˆ 2 0. (19)2

It is immediately apparent that half the contraction of the distribution occurs in the longitudinal and half in the
transverse directions.

The semi-classical equations ofmotion are just (18)with the replacement τ χ τ→ g ( ) . However, since
χ ϕ τ ϕ α=ϕ ϕu a u( , ) 3 ( ) 2 (where α is thefine structure constant) depends on ϕu (but not on the transverse
velocities) we pick up an additional contribution to the longitudinal phase space contraction:

 
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ˆ
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whereas, the transverse contraction is simply scaled by χg ( ):

β β β β β β β= − = − = =⊥ ∥ ∥ ⊥ ∥( )g g gˆ ˆ ˆ ˆ . (21)

Thus, as quantum effects becomemore important and χg ( )decreases, the semi-classicalmodel predicts a
reduction in both the longitudinal and transverse phase space contraction (reduced beam cooling). Aswell as
this scaling of the classical contraction by χg ( ), there is an additional longitudinal heating given by
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where β β τ ϕ χ α ϕ χ χ= = − = −ϕ⊥ ⊥g a g u a gˆ 2 ( ) ( ) 4 ( ) ( ) 32 . The ratio
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β
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9
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measures the strength of the longitudinal compared to the transverse phase space contraction. This is shown in
figure 1(a) for the interval χ ∈ [0, 1]. Even for theweakly quantum regime inwhich the semi-classicalmodel
remains valid, we observe a significant reduction in longitudinal beam cooling. This is especially clearwhen
comparison ismadewith the classical result β∥

ˆ as shown infigure 1(b).We see thatwhere χ = 0.2 there is nearly
a 60% reduction in the longitudinal contraction experienced compared to the Landau–Lifshitzmodel.

For the case of the classical Landau–Lifshitz theory in a planewave, theVlasov equation (14)may be solved
analytically for the particle distribution:

ϕ ϕℱ = ℱϕ ξ σ ϕ ξ σ
Λ ϕ ϕ( )( ) ( )u u u u u u, , , , , , e , (24)u0 0 0 0 4 ,

where ϕ ϕ ξ σ{ }u u u, , ,0 0 0 0 are the initial phase and velocities of a particle with ϕ ξ σu u u{ , , } at phaseϕ. In a similar

manner, the longitudinal distribution is found to be

ϕ ϕ=ϕ ϕ
Λ ϕ ϕ( )( ) ( )f u f u, , e . (25)u0 0 2 ,

The contraction/expansion of phase space is contained in the function

∫Λ ϕ τ ϑ ϑ ϑ=ϕ
ϕ

ϕ
ϕ( )u a u, d ( ) ( ). (26)2

0

Solutions to equation (18) [23] can then be used to rewrite ϕ ϕ ξ σ{ }u u u, , ,0 0 0 0 in terms of the independent

variables ϕ ϕ ξ σu u u{ , , , } :




 


 

τ ϕ

τ ϕ ϕ ϕ

τ ϕ
ϕ

τ ϕ ϕ ϕ

τ ϕ
ϕ

=
−

=
− + −

−
−

=
− + −

−
−

ϕ
ϕ

ϕ

ξ
ξ ϕ ϵ ϵ ϵ

ϕ
ϵ

σ
σ ϕ λ λ λ

ϕ
λ

( )

( )

u
u

u

u
u u a a

u

u
u u a a

u

1 ( )
,

( ) ( ) ( )

1 ( )
( ),

( ) ( ) ( )

1 ( )
( ), (27)

0

0
0

0
0

where the functions





 

∫

∫

∫

ϕ ϑ ϑ

ϕ ϑ ϑ

ϕ ϑ ϑ ϑ

=

=

=

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

a

a

a

( ) d ( ),

( ) d ( ),

( ) d ( ) ( ), (28)

i i
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0

with ϵ λ∈i { , }depend only on the properties of the laser pulse.

Figure 1.Reduction of longitudinal beam cooling. (a): The ratio (23) of the longitudinal to the transverse phase space contraction in
the semi-classicalmodel. The dashed line shows the classical ratio β β =∥ ⊥

ˆ ˆ 1. (b): Ratio of the semi-classical longitudinal contraction

to the classical Landau–Lifshitz result.
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Using equations (27)we can express ϑϕu ( ) in equation (26) in terms of the independent variable ϕu ,
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This latter result is in agreement with observationsmade byNeitz andDi Piazza [24], andwe see that the
longitudinal distribution is only sensitive to the properties of the laser pulse through the function  ϕ( ). After
the pulse has passed,  becomes constant and is proportional to thefluence of the pulse. Final-state properties of
the longitudinal distribution therefore depend only on the total energy contained in the laser pulse, and are
insensitive to how that energy is distributedwithin the pulse. The full distribution ℱ, on the other hand,
depends additionally on the integrals i given in equation (28).

Although the reducedVlasov solution (31) is somewhat simpler than (30), and captures the key features of
the electron beam itself, the solution is not sufficient to calculate the transverse current density, and hence
cannot be coupled toMaxwell’s equations to determine the radiation produced by the electron beam.However,
if the transversemomentum spread is sufficiently small, we can approximate the full distribution by

 ϕ ϕ δ ϕ δ ϕℱ = − −ϕ ξ σ ϕ ξ ϵ ϕ σ λ ϕ( ) ( )( ) ( ) ( ) ( )u u u f u u u u u, , , , , , , (32)

where the δ-functions restrict the transverse velocities to the submanifold i. Then, in addition to (16),
equation (14) yields

  
ϕ

τ τ τ ϵ λ
∂
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−
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∂

= − + ′ + ∈ϕ
ϕ

ϕ ϕ( )a u
u

a u a u a i, for { , }. (33)i i
i i i

2 2 2

Note that (33) indicate that the distribution is concentrated on a surface in phase space that itself satisfies the
Landau–Lifshitz equation.

Given solutions to the reducedVlasov equation (31) and the transverse Landau–Lifshitz equation (33), the
current can bewritten

∫ ϱℓ= ℱ = + +ξ σ
ϕ

ϕ
⊥ ∥j q x u u

u

u
j j˙ d d

d
, (34)a a a a a

with ⊥j
a and ϱ evaluated as

 ∫ ∫ ∫ϵ λ ϱ= + =ϵ
ϕ

ϕ
λ

ϕ

ϕ
ϕ⊥j q f

u

u
q f

u

u
q f u

d d
and d . (35)a a a

Wecould also calculate ∥j
a directly, but it followsmore straightforwardly from charge conservation, ∂ =j 0a

a .

In the following, we restrict our attention to the longitudinal distribution ϕ ϕf u( , ), and longitudinal beam
cooling, as this ismore readilymeasurable in experiments than the transverse cooling.However, the transverse
cooling, which can be considerably greater, can be determined from equation (23).

3.Numerical (re)construction of the particle distribution

Themotion of a single charged particle collidingwith a laser pulse, including radiation reaction, has been
extensively studied [9, 23, 25, 26]. As shown in section 2, theVlasov equationwith classical readiation reaction
can be solved analytically. However, this is not the case for the semi-classicalmodel (6) or for stochasticmodels
of radiation reaction in the quantum regime. Instead of attempting to solve aVlasov-type equation on the phase
space numerically, whichwould require significant computing resources, we propose an innovativemethod
which allows for the dynamics of a particle distribution to be explored using single-particle equations ofmotion
such that the distribution can be efficiently reconstructed.While this approach is quite general and could be used
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for a variety of systems, herewe consider a distribution of particles subject to equation (3) and its semi-classical
extension (6), without particle-particle interactions4.

Assuming that the laser pulse can be approximated by a planewavewith compact longitudinal support5, any
spatial spread in the initial particle distributionwould only determine themoment when each particular particle
enters the pulse. For simplicity, we therefore take all particles to originate from the same point. This is reasonable
aswe are primarily interested in the longitudinalmomentumdistribution.

Since our pulse ismodelled by a planewave andwe focus on the longitudinal properties of the distribution,
we consider the initialmomenta to be strongly peaked about zero in the transverse directions. As such, the initial
distribution can be taken to be aMaxwellian distribution for the (longitudinal)momentum p (in units ofmc)

ϕ
πθ θ

= = −
−

f p
N p p

( 0, )
2

exp
( ¯)

2
, (36)P

2⎡
⎣⎢

⎤
⎦⎥

with ϕ ω= −t k x· the phase, θ the variance of the distribution, and NP the number of particles. The
momentum p is related to our velocities of section 2 by

ω γ γ
ω

ω
= − =

+ + +
ϕ

ξ σ ϕ

ϕ

( )
( )

p u
u u u

u
, where

1

2
. (37)

2 2 2

We stress that this initial distribution is chosen for its simplicity; alternative distributions could be usedwhere
appropriate (such asMaxwell–Jüttner).

Typically, onewould sample the distribution at random,whichwould require a large number of particles to
accurately represent the distribution. Instead, since the particle number is simply

∫ ϕ=
−∞

∞
N p f pd ( , ), (38)P

wedetermine themomentum spacing δp between the particles from the initial distribution by truncating the
integral in (38) so that the particle number increases by unity in the givenmomentum interval:

∫ δ= ≃δ
−

+δ

p f p f p p1 d (0, ) (0, ) . (39)
p

p

p

2

p
2

This leads to a set of = +N N2 1P c initialmomenta = { }V p(0) (0)i for ∈ −i N N[ , ]c c , with the pi generated

iteratively from =p p̄0 and = ±±p p f p¯ 1 (0, ¯)1 using

ξ ξ= + =ξ
ξ

−
−( )

p p
f p

i
2

0,
with sgn( ). (40)i i

i

2

Themomentum space is not sampled uniformly, insteadmore particles are located in regionswhere the
distribution function is large.

As the evolution proceeds, this procedure is applied in reverse to reconstruct the distribution. The set of

momenta ϕV ( ) is ordered such that ⩾+p pi i1 and used tofind δ ϕ ϕ ϕ= −+ −( )p p p( ) ( ) ( ) 2i i i1 1 . The velocity

distribution is then defined to be

ϕ
δ ϕ

≔( )f p
p

,
1

( )
. (41)i

i

Reconstruction of a distribution from a particle sample can be problematic, but in our formalism it becomes
quite natural. This is achieved by using themomentum spacing between particles to determine the value of the
distribution such that equation (39) is satisfied for allϕ (i.e. integration over each of themeasuredmomentum
spacings always contributes a single particle to the total particle number). The closer themeasuredmomenta are
together, the ‘more likely’ one is to have a particle in thatmomentum range, resulting in a larger value for the
distribution.

The definition (41) allows properties of the distribution to be calculated directly from themomenta of the
individual particles. Themean is simply evaluated as

4
For a highly relativistic particle bunch, these interactions can be neglected on the time scale of the laser interaction.

5
A function has compact support if it is zero outside a finite interval.
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  

∫

∑

∑

ϕ ϕ ϕ

ϕ ϕ δ ϕ

ϕ

= =

≃

=

=

( )

p p
N

p pf p

N
p f p p

N
p

¯ ( ) ( )
1

d ( , )

1
( ) , ( )

1
( ). (42)

P

P i
i i i

P i
i

1

In a similarmanner, higher-ordermoments of the distributionXnmay be calculated straightforwardly as:

∑ϕ ϕ ϕ ϕ= − ≃ −X p p
N

p p( ) ¯ ( )
1

( ) ¯ ( ) . (43)n
n

P i
i

n⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

For example, the variance θ ϕ ϕ= X( ) ( )2 and skewness ϕ ϕ ϕ=S X X( ) ( ) ( )3 2
3 2 .We note that angular brackets

〈⋯〉will be used to denote an average over the bunch, not time.
Amajor advantage of this newmethodology is that the distribution can be accurately represented and

reconstructed using far fewer particles thanwould be required using random sampling. Figure 2(a) shows a
simpleGaussian distributionwith zeromean and unit variance, π= −A z z( ) (1 2 )exp( 2)2 , reconstructed
using twomethods. First, the distributionA(z) was sampled according to the iterative relation (40) with

=N 401P and then reconstructed using (41) (—). Next, Nz =100 000 randomnumberswere generated from
A(z) using aMersenne-Twister pseudo-randomnumber generator, fromwhich the distributionwas found
using 100fixed-width bins ‐ ‐ ‐( ). Evenwith 100 000 random samples, the standard approach does not describe
theGaussian perfectly, while the newmethod presented in this paper does an excellent job using only 401 points.
For comparison, a sample ofNz=401was also reconstructed using 50fixed-width bins (– · –). The advantage of
the newmethodwith such a small sample size is clear.

Figure 2(a) also shows how sampling the distribution according to equation (40) cuts off the tails of the
distribution, whichwill have an effect on themeasured properties of the reconstructed distribution. The finite
number of particles used to represent the distribution causes themeasured relativemomentum spread (defined
by equation (44) below) to be less than that specifiedwhen defining the initial distribution. Essentially, it comes
down to the ‘≃’ in equation (39), compared to the definition given by equation (41). As NP is increased, the
approximation in equation (39) improves, and themeasured value approaches the desired value. In addition,
withmore particles the distribution is sampled further into the tails. Figure 2(b) shows themeasured initial
spread, σ̂i, as a fraction of the desired spread, σ̂d, when the particle number is varied from as few as 11 up to

=N 2001P .We see that the approximation quickly improves as NP is increased up to about 500. The value
=N 401P is chosen to give less than 0.5%error in the initialmeasuredmomentum spread. In practice, good

agreement can be foundwith lower NP, with the caveat that properties sensitive to the tails of the distribution
(such as the skewness)may be strongly affected. (This is confirmed infigure 3, where the distribution and its
statistics calculated from the analytical solution to the classical Vlasov equation are compared to those obtained
with this newmethod.)

Figure 2. (a): AGaussian distributionA(z) is reconstructed using the newmethod described by equations (40) and (41)with
=N 401P particles (red, solid) and compared to the standard approach of random sampling, using bothNz=401 (blue, dot–dash)

and =N 100 000z (black, dashed) particles. (b): Variation of themeasurement of the initial relativemomentum spread σ̂i as the
number of particles NP is increased, compared to the desired value, σ̂d .
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4. Interaction of a particle bunchwith high-fluence laser pulses

The analytical solution to theVlasov equation including radiation reaction according to the Landau–Lifshitz
theory derived in section 2 predicts that the collision of an energetic electron beamwith a high-intensity laser
pulse leads to a significant contraction of the particle phase space, resulting in a reduction in the relative
momentum spread. Agreement between this analytical solution and numerical results obtained using the
approach discussed above is shown below to be excellent. As previously observed, classical beam cooling
depends only on the totalfluence of the pulse, rather than its duration or peak intensity independently [24, 27].
However, for the semi-classical extension, theVlasov equation is no longer tractable. This highlights the value of
our approach and, to demonstrate the use of our proposedmethod in such a case, we consider the importance of
quantum effects in the interaction of an electron bunchwith a high-intensity laser pulse.

To establish the impact of quantum effects on the evolution of the particle distribution subject to radiation
reaction, we introduce the relativemomentum spread and themomentum skewness (calculated from themean p̄
and variance θ):

σ ϕ
θ ϕ

ϕ
ϕ

ϕ

θ ϕ
= =

−

p
S

p p
ˆ ( )

( )

¯ ( )
and ( )

¯ ( )

( )
. (44)

3

3 2

⎡⎣ ⎤⎦

The former gives ameasure of the beamquality, while the latter indicates how symmetric the distribution is
about itsmean.

We restrict our attention to a linearly polarizedN-cycle planewave pulse (12),modulated by a sin2-envelope
[9], with =λa 0 and ϕ=ϵa a ( ), where

ϕ ϕ πϕ ϕ= < <
a

a L L
( )

sin( )sin ( ) for 0 ,

0 otherwise,
(45)0

2⎧⎨⎩

where a0 is the dimensionless (peak) intensity parameter (the so-called ‘normalized vector potential’) and
π=L N2 is the pulse length6. This pulse shape offers compact support, allowing the particles to begin and end in

vacuum. The totalfluence (energy per unit area) of the pulse is proportional to

Figure 3.The phase space evolution of the distribution function ϕf p( , )predicted by the analytical solution (31) of the reduced
Vlasov equation (16), compared to numerical results obtained using the newmethod presented in section 3. Results are presented for
(a)N=20 and (b)N=5 cycles, where π=L N2 is the pulse length. The fluence has been kept constant, with = ×Na 9.248 100

2 3.

6
For the sin2-envelope used in this work, the full-width half-maximum (FWHM)duration is half of this value.
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 ∫ ϕ ϕ π= =a Nad ( )
3

8
. (46)

L

0

2
0
2

In this work,  is kept constant, which fixes a0 for eachN. It has been shown [24, 27] (see also section 2) that the
classical Landau–Lifshitz prediction for the final state of a particle distribution emerging from the pulse is
completely determined by the fluence, whereas quantum effects are expected to depend on the value of a0 itself.
We are then able to explore the impact of the reduced emission in the quantummodel with varying a0 while
maintaining the same classical prediction. This allows us to explore the relative importance of quantum effects.

Tomotivate this study, parameters have been chosen to be relevant at the forthcoming ELI facility.We have
chosen to consider = ×Na 9.248 100

2 3 which, forN = 20with awavelength of λ = 800 nm, represents a full-
width half-maximumpulse duration of 27 fs with peak7 intensity 2 × 1021 W cm−2.We have investigated pulses
of length ∈N [5, 200]cycles (togetherwith their corresponding a0) counter-propagating relative to a bunch of

=N 401P particles, with an initialmomentum spread of 20% around + = ×p1 ¯ 2 102 3. This corresponds to
an average particle energy of just over 1 GeV,which should bewell within the capabilities of the laser-plasma
wakefield accelerator at ELI.

Before comparing predictions of the classical and semi-classicalmodels, we briefly confirm the validity of
ourmethod by comparing numerical results with the analytical solution (31) obtained in section 2. Figure 3
shows the interaction of a 1 GeV electron beamwith a plane-wave laser for two pulse lengths,N=20 ( ≃a 220 )
in (a) andN= 5 ( ≃a 430 ) in (b). The left-hand panels show the numerical results obtained using the new
method described in section 3, while the right-hand panels show the solution (31) using the initial distribution

ϕf u(0, ) corresponding to f p(0, ) given by (36)with ω ω= −ϕ ϕp u u( )1

2
. Themomentum p is evaluated

during the evolution using (37), alongwith the solutions (27) for ξ σu u, when = =ξ σu u 00 0 . The agreement is
excellent. Note that themeasured values for the initial and finalmomentum spread also agree, while the
skewness is underestimated by the numericalmethod (as discussed in section 3).

Figure 4 shows the variation of the particle distribution on the ϕ p( , )phase space. As can clearly be seen in
moving from the classical Landau–Lifshitz theory (left) to the quantummodel (right), there are noticeable
differences in themean p̄, spread σ̂ , and skewness S of the distribution.Wefirst note that the deficit in
measuring the initial σ =ˆi 19.9% < 20% is due to thefinite number of particles used to represent the
distribution (as discussed at the end of section 3 and illustrated infigure 2(b)).

For the classical theory, the final distribution only depends on the fluence of the pulse, though this does not
prevent the system from taking different routes along theway. As the number of cycles is decreased, very
different intermediate behaviour is observed infigure 4, yet themeasured properties of the final distribution
support this prediction: in each case, wemeasure themeanmomentum =p̄ 1197.7f with a relative spread

σ =ˆ 12.5%f . This represents a significant contraction of the phase space, where the average energy of the particle
bunch decreases significantly, as does its thermal spread (beam cooling), and the distribution becomesmore
sharply peaked. In addition, we find the development of a negatively-skewed distributionwith = −S 0.46f . In
the classicalmodel this is readily understood, since the higher a particle’smomentum themore it radiates. This
causes particles in the positive tail of the distribution to be slowed downmore than those in the negative tail.

The introduction of a semi-classicalmodel inwhich the effect of radiation reaction is reduced by the
function χg ( ) given by equation (7) results in a reduction in the amount of phase space contraction. Figure 4(a)
forN=200 clearly demonstrates this, with the final averagemomentum =p̄ 1301.1f only slightly higher than

the classical case. Thefinal relativemomentum spread is now 14.4%, showing that the final distribution is less
sharply peaked.While remaining negative, the skewness reduces inmagnitude to −0.280, because it is precisely
the higher-energy particles (whichwere classicallymost affected by radiation reaction) that nowhave this
damping suppressed due to larger χ (smaller χg ( )).

These changes becomemore pronounced aswemove to higher intensities (by reducing the number of
cycles). ForN=20, as shown in figure 4(b), we find that =p̄ 1451.8f and σ =ˆ 16.6%f have both increased, with

the skewness also increasing to = −S 0.129f . This trend continues toN=5 as shown infigure 4(c). In this case,
very little beam cooling occurs for the quantummodel, with thefinal relativemomentum spread taking the
value σ =ˆ 18.0%f around =p̄ 1581.3f . The profile also remainsmuchmoreGaussian, with = −S 0.0597f .

The reduction in phase space contraction (beam cooling) observed here is in agreementwith previous
predictions [28], which provides further validation of ourmethod for reconstructing the particle distribution.
Using this newmethod, it has been possible to investigate the effects of the semi-classicalmodel on a distribution
of particles. The distributions are nicely reconstructed and do not feature any artefacts, in contrast to other
approaches [17], which emphasizes the power of ourmethod.

Figure 4 also shows how the difference between the classical and quantum results increases as the intensity is
increased (or asN is decreased). It is therefore interesting to consider the difference δσ σ σ= −ˆ ˆ ˆf f f

qm cl as a

7
Peak intensity is obtained from π ϵ λ λ= ≃ ×I m c e a a(4 ) 2.74 10 ( )epeak

2 2 5
0

2 2
0
2 10

0
2 W m−2.
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fraction of the total (constant) classical change inmomentum spread, Δσ σ σ= −ˆ ˆ ˆi f
cl cl. This can be found in

figure 5(a), wherewe see that forN=5 the two predictions differ by about 75%.AsN is increased, this ratio is
reduced because the average quantumparameter χ〈 〉becomes smaller and radiation reaction is not so heavily
suppressed. It would be expected that the twomodels converge as → ∞N .

In cases where there is a large discrepancy between the predictions of the two theories, it is especially
important to be confident in the validity of themodel. As a semi-classicalmodel, we expect it to remain valid into
theweakly quantum regime, such that particles experience instantaneous values χ ≪ 12 . Figure 5(b) shows the
evolution of the bunch-average χ〈 〉 as the bunchmoves through a laser pulse withN=20 according to the
classical and semi-classicalmodels. Initially, there is good agreement between the twomodels, until the bunch
approaches the centre of the pulse, where the intensity becomes higher and themodels are significantly different.
For completeness, we note that our highest intensity case withN= 5 satisfied χ〈 〉 < 0.222 .

5. Conclusions

The next few years will see the emergence of a number of new high-power laser facilities operating at
unprecedented field strengths, providing access to fundamentally new physical regimes. This will allow us to
experimentally probe previously untested areas of physics, such as the long-standing question of radiation
reaction.

Figure 4.The phase space evolution of the distribution function ϕf p( , ). Classical predictions are shown in the left-hand panels,
while the corresponding semi-classical results are presented to the right. Values of the initial and final relativemomentum spread and
momentum skewness are displayed in each figure. The pulse length is reduced fromN=200 cycles in (a) toN=20 cycles in (b), and
finally toN=5 cycles in (c). In each case, we observe an increase in thefinalmeanmomentum and its spread (reduction in beam
cooling) predicted by the quantummodel.
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In this paper, we have analysed the transverse and longitudinal cooling of a relativistic electron beam as it
interacts with an intense laser pulse, according to classical and semi-classical theories of radiation reaction. In
the classical theory, we have found these two contributions to be equal, but quantum effects break this
symmetry, leading to significantly less cooling in the longitudinal than the transverse directions.

To facilitate evaluation of the longitudinal beam cooling effects, we have introduced an innovativemethod
to efficiently and accurately calculate the distribution function for an electron beam interactingwith an intense
laser pulse. This has been validated by comparisonwith an analytical solution to theVlasov equation in the
classical case, and used to compare classical and quantumpredictions of radiative cooling.We have found that
quantum effects can significantly alter the beamproperties and, unlike the classical case, can be influenced by the
shape of the laser pulse, not just its energy.

Aswemove into the quantum regimewhere final-state electron beamproperties become sensitive to pulse
shape, it is becoming increasingly important to have an efficientmethod in order to investigate the full
parameter space. The approach developed here to facilitate this study of beamdynamics provides a powerful tool
withwide-ranging applicationwithin the discipline.

The results presented in this paper are limited to the semi-classical case χ ≪ 12 . However, it should be
noted that, for the longitudinal beam cooling, this restriction is due to the use of a deterministic equation of
motion, and not themethod of sampling and reconstructing the distribution. There should be no obstruction to
exploringmore strongly quantum regimes (such as higher initial beam energies ∼5GeV available at ELI) using
this approachwith a stochastic equationwhere photon emission probabilities are determined by strong field
QED, as in [29, 30]. This will be addressed in future work, alongwith an investigation of stochastic transverse
beam cooling.
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