Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Beyond monochromatic light: three-dimensional confocal laser scanning microscopy using a supercontinuum source

McConnell, G. and Girkin, J.M. and Poland, S. (2006) Beyond monochromatic light: three-dimensional confocal laser scanning microscopy using a supercontinuum source. Proceedings of SPIE: The International Society for Optical Engineering, 6047. 2Q1 - 2Q5.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Confocal laser scanning microscopy (CLSM) has rapidly become an essential tool in the life sciences laboratory, enabling high-resolution and minimally intrusive optical sectioning of fluorescent samples. Most commercially available CLSM systems employ a gas laser, e.g. a Kr/Ar laser, to provide the excitation radiation. However, such lasers have several shortcomings, including the maintenance requirements, short lifetimes and high noise levels. To overcome these limitations, a light source for CLSM that is based on supercontinuum generation in photonic crystal fiber has been developed. This source provides the necessary wavelength range required to excite the widest possible variety of fluorophores. A novel method of extracting the desired wavelengths from the supercontinuum source using a digital micro-mirror device (DMD) is also described.