Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Beyond monochromatic light: three-dimensional confocal laser scanning microscopy using a supercontinuum source

McConnell, G. and Girkin, J.M. and Poland, S. (2006) Beyond monochromatic light: three-dimensional confocal laser scanning microscopy using a supercontinuum source. Proceedings of SPIE: The International Society for Optical Engineering, 6047. 2Q1 - 2Q5.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Confocal laser scanning microscopy (CLSM) has rapidly become an essential tool in the life sciences laboratory, enabling high-resolution and minimally intrusive optical sectioning of fluorescent samples. Most commercially available CLSM systems employ a gas laser, e.g. a Kr/Ar laser, to provide the excitation radiation. However, such lasers have several shortcomings, including the maintenance requirements, short lifetimes and high noise levels. To overcome these limitations, a light source for CLSM that is based on supercontinuum generation in photonic crystal fiber has been developed. This source provides the necessary wavelength range required to excite the widest possible variety of fluorophores. A novel method of extracting the desired wavelengths from the supercontinuum source using a digital micro-mirror device (DMD) is also described.