Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Modeling study on the secondary arc with stochastic initial positions caused by the primary arc

Cong, Haoxi and Li, Qingmin and Xing, Jinyuan and Siew, W. H. (2015) Modeling study on the secondary arc with stochastic initial positions caused by the primary arc. IEEE Transactions on Plasma Science. ISSN 0093-3813

Text (Cong-etal-IEEE-TPS-2015-Modeling-study-on-the-secondary-arc-with-stochastic-initial-positions)
Cong_etal_IEEE_TPS_2015_Modeling_study_on_the_secondary_arc_with_stochastic_initial_positions.pdf - Accepted Author Manuscript

Download (1MB) | Preview


In the conversion process from primary arc to secondary arc, there exists stochasticness phenomenon of the initial positions of secondary arc. However, the present simulation results of the arcing time with the arc chain model are constant, which is not consistent with the test results. In reaction to the above phenomenon, the stochastic simulation model was first established to calculate the relationship between the conductivity of the air and the temperature. Furthermore, the conductivity along the radius direction of the primary arc was acquired, and then the stochastic initial length of the secondary arc with different primary current was also obtained. Results showed that with the increase of primary current, the average value and dispersion of the initial secondary arc length also increased. Finally, the stochastic model of secondary arc with different initial positions was applied into the arc chain model to calculate the arcing time with dispersion, and the simulation results were compared with the experimental results. Results showed that the simulation results of the arcing time are consistent with the test results, and the relative errors are within 10%, which shows that the stochastic model is effective and reliable.