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The properties of ions confined within spherical dielectric cavities are examined by a split-

ting field-theory and Monte Carlo simulations. Three types of cavities are considered: one

possessing a uniform surface charge density, one with a uniform volume charge density, and

one containing mobile ions. In all cases, mobile counterions are present within the dielec-

tric sphere. The splitting theory is based on dividing the electrostatic interaction into long-

and short-wavelength contributions and applying different approximations on the two con-

tributions. The splitting theory works well for the case where the dielectric constant of the

confining sphere is equal to or less than that of the medium external to the sphere. Neverthe-

less, by extending the theory with a virial expansion, the predictions are improved. However,

when the dielectric constant of the confining sphere is greater than that of the medium outside

the sphere, the splitting theory performs poorly, only qualitatively agreeing with the simu-

lation data. In this case, the strong-coupling expansion does not seem to work well, and a

modified mean-field theory where the counterions interact directly with only their own image

charge gives improved predictions. The splitting theory works best for the system with a uni-

form surface charge density and worst for the system with a uniform volume charge density.

Increasing the number of ions within the sphere, at a fixed radius, tends to increase the ion

density near the surface of the sphere and leads to a depletion region in the sphere interior;

however, varying the ion number does not lead to any qualitative changes in the performance

of the splitting theory.
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I. INTRODUCTION

In many situations, charged species become restricted or confined within a dielectric cavity. We

have, e.g., ions in water-in-oil emulsions, ions in particles composed of a charged polymer network,

electrolytes in ion exchange membranes, and electrolytes in ion channels. Beside describing the

confinement of the charged species, the interaction between the particles mediated by the (confined)

charged species is also of large relevance in describing such colloidal systems on a longer length

scale. Consequently, there has been a great deal of effort to understand the behavior of confined ions.

The description of charged ionic systems can be taken from two distinct limits, differing in the

strength of the electrostatic interaction. In the weak-coupling limit, where the electrostatic inter-

actions are small in comparison to the thermal energy, spatial charge correlations can be largely

neglected. Here, mean-field theories, such as the Poisson-Boltzmann theory, work fairly well. Never-

theless, there are situations where charge correlations still are significant, such as in the presence of

dielectric inhomogeneities. Correlation corrections can be made to the mean-field theories by using,

e.g., loop expansions1,2 and variational methods3–7. These methods have been used to successfully

describe electrolytes near planar3,4,8,9, cylindrical5,6,10, and spherical3 dielectric interfaces. These ap-

proximations assume that the fluctuations in the system can be described by Gaussian statistics and,

in general, are accurate when these fluctuations are relatively weak.

When the electrostatic interactions between counterions become significant and the spatial cor-

relation among them becomes large, mean-field approaches break down, and other approximation

methods are required. A quite successful approach in the limit of very strong electrostatic interac-

tions is the strong-coupling expansion11–13. When counterions are strongly correlated and widely

separated from each other, due to their mutual repulsions, the system can be treated as an effective

one-body problem. In the strong-coupling expansion, the counterions are treated as largely indepen-

dent from each other. The strong interactions of the counterions with the fixed surface charge density

are explicitly accounted for, and the weaker ion-ion interactions are added as corrections12,14. For

planar geometries with counterions near a fixed surface charge distribution, this approach has been

found to work very well.

While the approximation schemes discussed so far work well in either the weak- or strong-coupling

limits, most physical systems lie between these two extremes. One approach to develop theories that

work in the intermediate regime has been to divide the electrostatic potential into short-wavelength

and long-wavelength contributions15–19. Treating the long-wavelength interactions with a mean-field

approximation and the short-wavelength correlations with a virial expansion leads to a theory that

has been found to work well from the weak to the intermediate and to the strong-coupling regimes

for planar geometries18–20. This splitting theory reduces to a mean-field theory for systems with weak
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electrostatic interactions and to the strong-coupling expansion for systems with very large electrostatic

interactions.

In this work, we examine the ability of the splitting theory to predict the properties of ions confined

within a spherical cavity by comparing its predictions with results of Monte Carlo (MC) simulations.

This is made for ions trapped in cavities with different distributions of neutralizing charges and dif-

ferent dielectric constants. It is unclear how the splitting theory will perform for such systems, since

previous studies of confined ions have been for systems where at least one of the dimensions is of

infinite extent, such as planes or cylinders. As the charge density of a system increases, the splitting

theory approaches the strong-coupling expansion. This expansion is based on an effective one-body

approximation, where the ions are well separated, but in the case of spherical confinement this may

no longer be the situation, as the counterions cannot indefinitely distance themselves from each other.

The remainder of this paper is organized as follows. In Sec. II, we briefly present the splitting

theory and describe aspects of the theory specific to ionic systems confined in spherical, dielectric

cavities. Details of the MC simulations are presented in Sec. III. In Sec. IV, we present results

for three types of systems that differ in the manner in which the neutralizing charge is distributed.

The first type possesses a uniform surface charge density at the dielectric boundary, the second type

contains a uniform volume charge distribution within the sphere, and the final case has ions within

the sphere. Finally, the conclusions of this work are summarized in Sec. V.

II. THEORY

For a model system of ions confined in a dielectric sphere, we here present (i) the Green’s function

that describes the electrostatic interactions among the ions and between the ions and the dielectric

interface and (ii) a splitting field theory, which is able to predict the radial ion density distribution

functions. More detailed derivations of the splitting theory can be found in Refs. 18 and 19.

A. Green’s function

Physically, the Green’s function G0(r, r′) of the Poisson equation represents the potential gener-

ated at position r by a unit point charge located at position r′, and it is defined through the equation

− 1

4π
∇ · [ε(r)∇G0(r, r′)] = δd(r− r′). (1)

where ε(r) denotes the spatial variation of the dielectric constant, and d the dimensionality of the

space.

Formally, the Green’s function G0(r, r′) can be divided into two terms as

G0(r, r′) = Ghom(r, r′) +Ghet(r, r
′), (2)
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where Ghom is the Green’s function of a system with a homogeneous dielectric constant, and Ghet is

the influence of spatial variations in the dielectric constant.

We now restrict ourselves to a three-dimensional (d = 3) space containing a sphere of radius R

with a dielectric constant ε1 embedded in a medium with a dielectric constant ε2. In this case, the two

terms in Eq. (2) can be expressed as

Ghom(r, r′) =
1

ε1|r− r′|
(3)

and3

Ghet(r, r
′) = − ∆

ε1R

∞∑
l=0

l∑
m=−l

(l + 1)

l + ζ

(
r

R

r′

R

)l
Pl(cos γ) (4)

where η = ε1/ε2, ∆ = (1 − η)/(1 + η), ζ = (1 + η)−1, r is the distance of r from the center of the

sphere, r′ is the distance of r′ from the center of the sphere, and γ is the angle between the vectors r

and r′.

Mathematically, Eq. (4) can be re-expressed20,21 in a more rapidly converging series. For the case

where both r and r′ lie inside the dielectric boundary,

Ghet(r, r
′) =

η

ε1R

1− η
1 + η

{
− 1

η
(1− 2t cos γ + t2)−1/2

+
t−1

1 + η
ln

(1− 2t cos γ + t2)1/2 − t+ cos γ

1 + cos γ

− η

1 + η

[
1 +

∞∑
l=1

1

(l + 1)

tlPl(cos γ)

(1 + η)l + 1

]} (5)

where t ≡ rr′/R2.

The surface charge polarization, originating from a point charge inside the dielectric boundary,

gives rise to an interaction energy involving the ion that is proportional to Ghet(r, r) and given by

Ghet(r, r) =
η

ε1R

1− η
1 + η

{
− 1

η
|1− t|−1 +

t−1

1 + η
ln |1− t|

− η

1 + η

[
1 +

∞∑
l=1

1

(l + 1)

tl

(1 + η)l + 1

]} (6)

When η < 1 and/or both cations and anions are present, the ions possess a nonzero radius to avoid an

infinite negative Coulomb energy; otherwise point ions are employed to limit the number of parame-

ters.

B. Splitting theory

The basic idea of the splitting theory is to separate the electrostatic interactions into long-

wavelength (large-distance) and short-wavelength (short-distance) contributions and to evaluate each
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of these within an appropriate approximation scheme15–17,22,23. This division is achieved by splitting

the Green’s function G0(r, r′) of the Poisson equation as

G0(r, r′) = Gs(r, r
′) +Gl(r, r

′) (7)

whereGl = PG0 is the long-wavelength portion of the Green’s function,Gs = (1−P)G0 is the short-

wavelength portion of the Green’s function, and P is an operator that filters out short-wavelength

contributions.

In this work, we choose P = [1−σ2∇2 +σ4∇4]−1, where σ is the length scale that separates short-

wavelength and long-wavelength phenomena. For this choice of operator P , the short-wavelength

Green’s function Gs becomes

Gs(r, r
′) = Ghom,s(r, r

′) +Ghet,s(r, r
′) (8)

where

Ghom,s(r, r
′) =

e−
√
3|r−r′|
2σ

ε1|r− r′|

[
cos
|r− r′|

2σ
+

1√
3

sin
|r− r′|

2σ

]
(9)

and

Ghet,s(r, r
′) = − 2

π

∆

ε1

∞∑
l=0

l + 1

l + ζ

(
r′

R

)l
(2l + 1)

2√
3σ

Im[eiπ/6il(ar)kl(aR)]Pl(cos γ), (10)

where a−1 = σeiπ/6, il is a modified spherical Bessel function of the first kind, and kl is a modified

spherical Bessel function of the second kind.

If the contributions to the partition function due to the short-wavelength and long-wavelength fluc-

tuations in the system are determined exactly, then the resulting free energy (and other properties) of

the system will be independent of the choice of the operator P . However, in practice, approximations

must be made to evaluate these terms, and, as a consequence, the free energy developed by the theory

will be dependent on the precise manner in which the Green’s function is split, as well as the nature

of the approximations.

This is similar to the use of the Ewald summation method to evaluate electrostatic interactions.

In this case, the short-range terms are summed directly, while the long-range terms are summed in

Fourier space. Without dividing the interaction, the resulting calculations are impractically slow;

however, with the splitting, both the short-range and long-range terms converge much more rapidly

than the original series.

In this work, the short-wavelength contribution is approximated by a cumulant expansion truncated

at second order, which corresponds to using the second virial approximation for the short-wavelength

contributions. The long-wavelength contributions are treated using a mean-field approximation. With
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these approximations, the free energy functional F of the system is given by18,19,24

βF [ρ] =
∑
α

∫
drρα(r)[ln ρα(r)Λ3

α − 1 + βuα(r)]− 1

2

∑
αα′

∫
drdr′ρα(r)fαα′(r, r

′)ρα′(r
′)

+ βEse −
1

2β

∫
drdr′ψ̄l(r)G

−1
0 (r, r′)ψ̄l(r

′) +

∫
dr

[
Σ(r) +

∑
α

qαρα(r)

]
iψ̄l(r) + · · · .

(11)

where ρα(r) is the number density, qα is the charge, Λα is the thermal wavelength of ions of type

α, and the ellipses represent higher order virial corrections and cumulant terms not included in the

present theory.

In Eq. (11), uα(r) is an effective one-body potential acting on each ion of type α and is given by

uα(r) = qα

∫
dr′Gs(r, r

′)Σ(r′) +
q2
α

2
Ghet(r, r)−

q2
α

2
PGhom(r, r) + uext

α (r). (12)

where uext
α (r) is an external, non-electrostatic interaction imposed on ions of type α. The term Ese is

the short-wavelength self energy of the fixed charge density Σ(r), which is given by

Ese =
1

2

∫
drdr′Σ(r)Gs(r, r

′)Σ(r′). (13)

The quantity ψ̄l(r) is the long-range portion of the mean electrostatic potential:

ψ̄l = Pβφ (14)

where φ is the mean electrostatic potential, which is obtained from solving the Poisson equation

− 1

4π
∇ · [ε(r)∇φ(r)] =

∑
α

qαρα(r) + Σ(r). (15)

Finally, the Mayer f -function, which appears in Eq. (11), is given by

fαα′(r, r
′) = e−βqαqα′Gs(r,r

′) − 1 (16)

The theory with fαα′(r, r′) = 0 will be referred to as the splitting theory and with fαα′(r, r′) given by

Eq. (16) to as the splitting theory with virial correction.

The physics of electrolyte systems near a fixed charge density has been described through two

different limiting situations12,13. In the limit of low fixed charge density or small counterion valency,

the counterions are fairly uncorrelated and the Poisson-Boltzmann theory works well. When the

fixed charge density or the counterion valency is large, then the physics is dominated by electrostatic

interactions between the counterions. In this situation, the mutual repulsion between counterions

leads to a large correlation hole surrounding each of the counterions. The strong-coupling expansion

accounts for this by considering the interaction with the fixed charge density, and then with other ions.
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However, in the case when the ions are restricted to a confined space, then the size of the correlation

hole is limited and the interactions between ions become more significant. It is unclear how the

strong-coupling expansion performs in this situation.

While the virial expansion does yield the proper leading-order behavior in the strong-coupling

limit12, it does not give the correct form for the leading order correction14,19,25,26, which was first

determined numerically by Moreira and Netz25 for the planar geometry. For example, the leading-

order correction for the pressure between two charged plates with intervening counterions varies

inversely as the square root of the coupling parameter, while the virial expansion yields a correction

that varies inversely with the coupling parameter. However, the dependence of the parameter σ within

the splitting theory allows it to give the correct prediction of the power law, but changing the level of

approximation of the integration of the short-range fluctuations will change the precise value of the

proportionality constant. Consequently, it is able to give24 an excellent description of the pressure in

the two plate geometry from the strong- to weak- coupling limits.

The splitting theory is able to pass between these two limiting cases. The value of the splitting

parameter is determined by making the free energy stationary with respect to variations in σ:

∂F

∂σ
= 0 (17)

In the limit σ → 0, the theory reduces to a modified form of the Poisson-Boltzmann theory, where

the ions interact explicitly with their image charges. When σ → ∞, the theory becomes related to

the strong-coupling expansion11,12. The “optimal” value of the splitting parameter will depend on the

precise approximation used to evaluate the free energy. Hence, the particular values determined for σ

will differ between the splitting theory with and without the virial correction.

Once the optimal value of the splitting parameter is known, all the static properties of the system

can be determined from the free energy functional given in Eq. (11). The chemical potential of an ion

of type α in the system is given by

γα(r) = ln ρα(r)Λd
α + βuα(r) + qαiψ̄l(r)−

∑
α′

∫
dr′fαα′(r, r

′)ρα′(r
′) + · · · . (18)

The density distribution of ions of type α can be obtained by solving the above equation:

ρα(r) = Λ−dα eγα(r)−βuα(r)−qαiψ̄l(r)+
∑
α′

∫
dr′fαα′ (r,r

′)ρα′ (r
′)+···. (19)

At equilibrium, the chemical potential γα(r) of each type of ion α should be constant throughout the

system.

For a given choice of σ, Eqs. (19), (15), and (14) are solved numerically to obtain the ion density

profile and electrostatic potential. In this work, the chemical potential is spatially uniform, and its

value is adjusted so that the total charge of the counterions neutralizes the surface charge. From the
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ion density profile, the charge density follows, and the Poisson equation, Eq. (15), is solved using

the finite difference method, while the link between the long-range portion of the mean electrostatic

potential iψ̄l and the mean electrostatic potential φ is evaluated using the fast Fourier transfer method.

This then leads to a new estimate of the ion density profile. This process is repeated until the solution

has converged. The splitting parameter σ is then varied until the free energy functional, given in

Eq. (11), is maximized.

III. SIMULATION DETAILS

Monte Carlo (MC) simulations were performed in the canonical ensemble, (i.e. at constant num-

ber of particles, volume, and temperature) for systems of ions confined in a dielectric cavity. The

electrostatic energy originating from Ghet(r, r
′) (referred to as the polarization energy) was evaluated

using Eq. (5). This expression contains a term that involves an infinite sum over l, which needs to be

truncated for it to be evaluated numerically. Fortunately, this sum converges extremely rapidly. In no

case were significant differences observed between truncating the sum after one term and two terms.

The data presented are calculated by approximating the sum with only one term.

After equilibration, each simulation involved 107 MC trial moves per ion for systems containing

N = 5 ions and 106 MC trial moves for N = 100 ions. The value of trial displacements ranged

from 2 to 10 Å. Radial ion distributions were determined by using a histogram width of 0.2 Å. Sta-

tistical uncertainties were calculated using block averaging by subdividing each simulation into ten

equally sized blocks. The integrated MC/molecular dynamics/Brownian dynamics simulation pack-

age MOLSIM for molecular systems was employed27. Both the ion polarization self energy and the

ion-ion polarization interactions were included in the MC simulations. The inclusion of the polariza-

tion energy lengthened the MC simulation times by a factor of 2.5, as compared to the time where the

polarization energy evaluation was switched off.

IV. RESULTS AND DISCUSSION

We now apply the theory developed in Sec. II to a system of ions possessing a charge of magnitude

q and hard-sphere radius Rion. Beside the Coulomb interaction, the interaction between ions also

possesses a short-range, excluded volume contribution ushort(r) given by

ushort(r) =

∞ for 0 < r < 2Rion

0 for 2Rion < r
. (20)
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The ions are confined within a sphere of radius R though an external potential uext(r) given by

uext(r) =

 0 for 0 < r < R−Rion

∞ for R−Rion < r
. (21)

The dielectric constant of the medium inside the confining sphere is ε1, and the dielectric constant of

the medium external to the confining sphere is ε2. Consequently, the dielectric constant of the system

ε(r) varies as:

ε(r) =

 ε1 for 0 < r < R

ε2 for R < r
. (22)

We consider three different types of such systems, which are schematically depicted in Fig. 1.

The first system is comprised of a set of identical ions, which is neutralized by a uniform surface

charge density on the sphere [Fig. 1(a)]. The second system consists of a set of same ions, which is

neutralized by a uniform volume charge density within the sphere [Fig. 1(b)]. The final system is a

simple electrolyte, with both ions and counterions, confined within a dielectric sphere [Fig. 1(c)].

A. Counterions in a dielectric cavity with a uniform surface charge density

We first consider a system ofN ions with charge q and hard-sphere radiusRion, which are confined

within the dielectric sphere. The uniform and spherical surface charge density Σ(r) is located at the

dielectric discontinuity and is given by

Σ(r) =
Q

4πR2
δ(r −R) (23)

where Q = −Nq is the total charge of the spherical shell. This fixed charge density neutralizes the

charges of the ions. This system is depicted in Fig. 1(a).

The electrostatic potential φ(r) generated by a charge distribution Σ(r) is given by

φ(r) =

∫
dr′G0(r, r′)Σ(r′),

which for a uniform and spherical surface charge density reduces to

φ(r) =
Q

ε2R

 1 for r < R,

R/r for R < r
. (24)

Outside the sphere, the electrostatic potential decays inversely with the distance from the center of

the sphere. Inside the sphere, the electrostatic potential from the fixed and uniform charge density

is constant; therefore, an ion within the sphere will feel no force from the surface charge density,

regardless of its position.
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The short-wavelength component of the electrostatic potential generated by a fixed charge density

is given by

φs(r) =

∫
dr′Gs(r, r

′)Σ(r′). (25)

This quantity is important to the theory, as it contributes to the effective one-body interaction potential

that an ion experiences. For a uniform and fixed spherical surface charge density, this becomes

φs(r) =
Q√
3ε2R

f2(r). (26)

where

f2(r) =
σ

r

[
e−
√
3 (R−r)
2σ cos

(
R− r

2σ

)
− e−

√
3 (R+r)
2σ cos

(
R + r

2σ

)]
.

The difference f2(r)−f2(0) is shown in Fig. 2 for different values of the splitting parameter σ. When

σ is much larger than the radius of the confining sphere R, the short-range potential φs(r) is constant,

as expected. As σ/R decreases, φs(r) becomes larger at the surface of the sphere until σ/R ≈ 0.2.

Thereafter, the potential at the surface begins to decrease with decreasing σ/R. For σ/R . 0.2, the

potential is constant except for a region within a distance ≈ σ/R from the surface of the sphere.

For this system, the one-body potential u(r) is given by

βu(r) =
ηQ/q√

3

lB
R
f2(r) +

βq2

2
Ghet(r, r)−

lB

2
√

3σ
+ βuext(r). (27)

where lB = βq2/ε1 is the Bjerrum length. In the limit σ/R → 0, the short-wavelength interaction of

the ions with the uniform surface charge density vanishes. When σ/R � 1, the one-body potential

becomes

βu(r) ≈ η(Q/q)
lB
R

+
βq2

2
Ghet(r, r) + βuext(r).

The short-wavelength self energy of the fixed and uniform surface charge density is given by

Ese =
Q2

2
√

3ε2R

σ

R

[
1− e−

√
3R/σ cos

(
R

σ

)]
(28)

In the limit σ/R→∞, the self energy of the fixed charge becomes

Ese ≈
Q2

2ε2R
, (29)

which is the self energy of a spherical shell charge.

As mentioned previously, the value of the splitting parameter σ is chosen such that the free energy

is stationary with respect to σ [see Eq. (17)]. The variation of the optimal value of σ with the number

of ions N in the system is shown in Fig. 3. For the case N = 1, the splitting parameter diverges (i.e.

σ → ∞), and the theory reduces to that where the ion simply interacts with the fixed charge density.

As the number of ions in the cavity increases, the screening effect increases and σ decreases. For
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sufficiently large numbers of ions in the sphere, the splitting parameter varies as σ/R ∝ N−1/2 for

η = 1 and 0.1. This corresponds to σ being proportional to the spacing between ions when they are

packed near the surface of the confining sphere.

For a fixed, and not too small, number of ions in the system, σ/R increases with the radius of the

confining sphere. The increase is largest for large η and vanishes for η = 0.1. The strength of the self

energy of the fixed charge and the one-body potential is proportional to 1/R [see Eqs. (28) and (27)].

Therefore, we expect that as the radius of the confining sphere becomes larger, the contribution of

these terms will become smaller, and the mean-field limit will prevail. As the radius of the confining

sphere shrinks and σ/lB becomes smaller, we find that the one-body term begins to dominate the

distribution of the ions.

Density profiles for N = 5 point ions confined within a sphere at η = 1 (no dielectric interface)

are shown in Fig. 4(a) and for N = 100 ions in Fig. 4(b) at sphere radii R/lB = 1 and 10. In all

cases, the density maxima appear at the surface of the confining sphere, which originates from the

repulsive ion-ion interaction. Remember that the uniform surface charge density does not impose any

force on the ions. For this case, the theory reproduces well the MC simulation data, though it slightly

underestimates the ion density at the surface and slightly overestimates the density at the center of the

sphere. The addition of the virial correction improves the theory from the original splitting theory for

N = 5.

The corresponding density profiles for point ions at η = 10 (the dielectric constant of the confining

sphere is greater than that of its surroundings) are shown in Fig. 5. Here, the ion density is zero at

the surface of the sphere, and density maxima occur within the interior of the dielectric sphere. The

inward shift of the density maxima is due to induced surface charges that repel the ions from the

dielectric interface. As the number of ions in the sphere increases, the density maxima are pushed

closer to the surface of the sphere, decreasing the ion concentration in the center of the sphere and

resulting in a fairly high and sharp peak. For these systems, the prediction of the splitting theory is

poor. Unlike the case η = 1, the virial correction actually worsens the predictions of the splitting

theory. Adding short-range correlations to this order is insufficient to quantitatively describe the

system. This suggests that using the cumulant (virial) expansion to approximate the short-wavelength

fluctuations may not be best choice. Perhaps another approximation scheme, such as a loop expansion,

could lead to improved results.

Interestingly, setting σ = 0 in the splitting theory (both with or without the virial correction)

yields better predictions for the ion density profiles. This corresponds to the case where the ions

interact only with their own image charge in the one-body potential, and the interaction of the ions

with the fixed charge density (which is zero in this case) and the other ions is treated within a mean-

field approximation. Physically, this corresponds to the situation where the ions are relatively “fixed”
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and, consequently, the electrostatic potential does not significantly fluctuate. This limit of the splitting

theory is quite similar to the approach developed in Ref. 28, where the Poisson-Boltzmann equation

was modified to explicitly incorporate the interaction between ions and their image charges.

Finally, density profiles for ions at η = 0.1 (the dielectric constant of the confining sphere is

smaller than that of its exterior surroundings) are shown in Fig. 6. Here, the ions are attracted by the

dielectric discontinuity, and a hard-sphere radius Rion = 0.05R has been assigned to the ions to avoid

the divergence of the attractive polarization energy at the dielectric discontinuity [see Eq. (21)]. As

for η = 1, the splitting theory performs well, and the performance is (i) better for N = 5 than for

N = 100 ions and (ii) better with virial correction included than excluded.

B. Counterions in a dielectric cavity with a uniform volume charge density

Again consider a system of N ions, each possessing the charge q and hard-sphere radius Rion,

which are confined within a dielectric sphere; however, now there is a uniform spherical volume

charge density Σ(r) present inside the dielectric sphere, which is given by

Σ(r) =
3Q

4πR3

 1 for r < R

0 for R < r
(30)

where r is the distance from the center of the sphere, and Q = −Nq is the total charge of the volume

charge density. The volume charge density serves as a neutralizing background to the ions. This

system is depicted schematically in Fig. 1(b).

The electrostatic potential φ(r) generated by this uniform volume charge density is

φ(r) =
Q

ε1R


1

2

(
3− r2

R2

)
− (1− η) for r < R

ηR

r
for R < r

. (31)

This acts as a harmonic potential that draws the ions toward the center of the sphere with a linear

force. In this case, the short-wavelength potential generated by the fixed charge is

φs(r) =
Q

2ε1R
f1(r)− (1− η)

Q√
3ε1R

f2(r) (32)

where

f1(r) =
σ2

R2

{
6 +

(√
3 + 3

σ

R

) R
r

[
e−
√
3(R−r)
2σ sin

(
R− r

2σ

)
− e−

√
3(R+r)
2σ sin

(
R + r

2σ

)]

−
(

3 +
√

3
σ

R

) R
r

[
e−
√
3(R−r)
2σ cos

(
R− r

2σ

)
− e−

√
3(R+r)
2σ cos

(
R + r

2σ

)]}
.

The ratio f1(r)/f1(0) is plotted in Fig. 7 for different values of the splitting parameter. The form of

the function is dictated by the ratio σ/R. The strength of the potential is given by the ratio R/lB.
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The smaller the value of R/lB, the stronger the short-ranged potential generated by the uniform fixed

charge density.

The one-body potential felt by the ions is given by

βu(r) =
Q/q

2

lB
R
f1(r) + (1− η)

Q/q√
3

lB
R
f2(r) +

βq2

2
Ghet(r, r)−

lB

2
√

3σ
+ βuext(r).

In the limit σ/R → 0, the short-wavelength interaction of the ions with the fixed charge density

vanishes. When σ/R� 1, this becomes

βu(r) ≈ βqQ

2ε1R

(
3− r2

R2

)
− (1− η)

βqQ

ε1R

+
βq2

2
Ghet(r, r) + βuext(r).

The corresponding expression for the short-wavelength self-energy of the fixed charge density is

Ese =
3Q2

2ε1R

σ2

R2

[
1−
√

3

2

σ

R

(
1 +

σ2

R2

)
−
√

3

2

σ

R

(
1− σ2

R2

)
e−
√

3R/σ cos

(
R

σ

)

+

√
3

2

σ

R

(
1 +
√

3
σ

R

)(√
3 +

σ

R

)
e−
√

3R/σ sin

(
R

σ

)]

+ (1− η)

√
3Q2

4ε1R

σ2

R2

[
σ

R
−
√

3−
(√

3 +
σ

R

)
e−
√

3R/σ cos

(
R

σ

)

+
(

1 +
√

3
σ

R

)
e−
√

3R/σ sin

(
R

σ

)]
(33)

This is a monotonically increasing function of σ/R. In the limit σ/R → 0, the self-energy vanishes.

In the limit σ/R→∞, the short-wavelength self-energy of the fixed charge density becomes

Ese ≈
3Q2

5ε1R
− (1− η)

Q2

2ε1R
,

which is the bare self-energy of a uniform spherical charge density.

The optimal values of the splitting parameter as a function of the number of ions in the spherical

cavity is shown in Fig. 8. For the cases η = 1 and 0.1, the general dependence of σ/R on N is quite

similar to that found in the systems with the uniform surface charge density (see Fig. 3), although the

N -dependence is weaker. However, the results for η = 10 differ substantially from that previously

found and are shifted to smaller values of σ/R. In addition, for R/lB = 0.5 and 1 there is a critical

value ofN above which no optimal value of σ can be found. This is depicted by the point (see circle in

Fig. 8) where the line splits into two branches. In the region between the two branches, characterized

by different values of σ/R, the splitting theory with the virial correction has no solution.

Figure 9(a) provides ion density profiles for N = 5 point ions, and Fig. 9(b) for N = 100 point

ions confined in the sphere at η = 1. Again density maxima appear in the interior of the dielectric
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sphere (with a few exceptions). However, here the two balancing forces, giving rise to the density

maxima, are (i) the ion-ion repulsion and (ii) the linear inward force from the uniform volume charge

density, represented by Eq. (31). Moreover, (i) the location of the density maxima is shifted to a larger

radial distance, and the height of the maxima increases with the larger number of ions (larger N ) and

(ii) the height of the maxima increases with decreasing system size (smaller R/lB).

While the splitting theory performs adequately for the larger value ofR/lB, its predictions become

increasingly poor as size of the confining sphere decreases. The virial correction improves the splitting

theory; however, discrepancies remain, pointing out the importance of higher order virial terms, and

their incorporation should lead to an improvement of the theory. Generally, the theory is less poor for

the system with the larger number of ions. Finally, the Poisson-Boltzmann theory, which corresponds

to the limit σ = 0 of the splitting theory, predicts a uniform ion density profile for this system,

independently of the values of R and N .

Next, ion density profiles for N = 5 and N = 100 point ions confined in the sphere at η = 10

are provided in Fig. 10. In the same manner as for the case with a uniform surface charge density,

at η = 10 (i) the polarization of the dielectric interface repels the ions from the sphere surface and

all ion densities become zero at the dielectric interface, where the ion-surface polarization energy

becomes infinite and (ii) the radial structuring of the ions is enhanced, as compared to η = 1. From

the results of the MC simulations, we deduce that the magnitude of the highest peak located closest to

the spherical boundary increases with reducing radius of the sphere and is shifted toward the surface

with increasing number of ions, whereas the heights of the maxima are basically insensitive to the

number of ions.

For the case R/lB = 1 with N = 100 ions, the splitting theory with the virial correction has a

region with no solution. For these systems, we take the value of σ that has the highest free energy,

which corresponds to the lower branch of the curve for the splitting parameter (see Fig. 8). As for the

case with a uniform surface charge density at η = 10, the splitting theory performs poorly, in general.

We note that (i) the location of maxima is too close to the surface of the confining sphere and (ii) the

amplitude is too small for N = 5 and too high for N = 100 ions. Inclusion of the virial correction

improves the amplitude and location of the main peak but leads to a depletion of ions in the center

of the sphere, which does not appear in the simulations. Finally, as with the uniform surface charge

density, we find that setting σ = 0 in the splitting theory leads to improved predictions.

Figure 11 provides ion density profiles of the confined ions at η = 0.1. Here the ions are subjected

to three different types of forces: (i) repulsive ion-ion forces pushing the ions radially outward, (ii)

a linear force from the uniform volume charge density pulling ions toward the center of the sphere,

and (iii) a force from the surface polarization pulling the ions toward the dielectric discontinuity. As

the last force diverges at the discontinuity, we again set Rion = 0.05R to avoid this divergence. In
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comparison with the case of a uniform surface charge density (Fig. 6), we infer from the results of

the MC simulations that (i) accumulation of the ions near the surface is somewhat reduced and (ii)

the depletion of the ions in the center of the sphere has almost vanished for N = 5 and completely

vanished for N = 100.

For N = 5, the splitting theory without the virial correction overestimates the ion density near

the center of the sphere, while with the virial correction it performs reasonably well. The magnitude

of the virial correction is significant. For N = 100, the splitting theory reproduces qualitatively the

simulation results, but exaggerates the density minimum next to the global maximum and predicts a

secondary density maximum. The virial correction offers a significant improvement in the prediction

of the splitting theory.

C. Simple electrolyte in a dielectric cavity

Finally, we examine systems having N cations with charge +q and N anions with charge −q con-

fined within the dielectric sphere. The ions have a hard-sphere radius Rion = 0.5lB [see Eq. (20)]

to prevent the Coulomb interaction between cations and anions from diverging [i.e. the cation-anion

Mayer f -function, Eq. (16), in the free energy functional, Eq. (11)], as well as to prevent the diver-

gence between ions at the dielectric discontinuity when η = 0.1 [see Eq. (21)]. A schematic drawing

of these systems is provided in Fig. 1(c).

Monte Carlo simulations for charged hard-sphere systems confined inside a cavity with a dielectric

constant much larger than its exterior surroundings have been previously performed29 in order to

determine the air-water interfacial tension of electrolyte systems. These have been found to be in

good agreement with experimental measurements. Note, however, the degree of confinement and the

strength of the electrostatic coupling in that study are less extreme than examined here.

Since no fixed charge density is present (i.e. Σ(r) = 0), Ese = 0. The one-body potential is simply

given by the image charge generated by the dielectric interface:

βu±(r) =
βq2

2
Ghet(r, r)−

lB

2
√

3σ
+ βuext(r). (34)

Because the cations and anions are symmetric, there is no charge separation in the system, i.e., the lo-

cal charge density is everywhere zero. In addition, the average electric potential is constant throughout

the system, so we take ψ̄l = 0.

In this case, the free energy F of the system simplifies to

βF [ρ] = 2

∫
drρ±(r)[ln ρ±(r)Λd

± − 1 + βu±(r)]

−
∫
drdr′ρ±(r)[f++(r, r′) + f+−(r, r′)]ρ±(r′)

(35)

15



where ρ±(r) is the density profile, and u±(r) is the one-body potential of the cations and/or anions.

Note that f++(r, r′) = f−−(r, r′) is the Mayer f -function between two like ions, and f+−(r, r′) is the

Mayer f -function between two unlike ions.

The variation of the optimal splitting parameter with the number of cation-anion pairs in the di-

electric sphere is given in Fig. 12. The parameter σ divides the short-ranged fluctuations from the

long-ranged fluctuations, where ion-ion and ion-fixed charge interactions on a length scale less than

σ are treated within the virial approximation and interactions on a scale longer than σ are treated by

coupling to the long-range portion of the electrostatic potential. As in the previous cases, the split-

ting parameter decreases as the number of ions within the confining sphere increases. The increased

density dampens fluctuations, which become limited to shorter length scales.

The ion density profiles forN = 5 ion pairs andN = 100 ion pairs confined in a sphere with η = 1

are presented in Fig. 13. Due to the symmetry of these systems, the anions and cations have identical

density profiles. The MC simulation results show that the ion density is essentially uniform in the

sphere for N = 5 ion pairs with a slight depletion or accumulation (depending on radius of confining

sphere) of ions near the surface of the confining sphere. With N = 100 ion pairs, density maxima

appear at the surface for both conditions, the height of the maximum increasing with decreasing radius

of the confining sphere. The splitting theory predicts that the ion density profiles have a maximum

at the center of the sphere. We attribute this to the cohesive influence of the Coulomb interaction.

The absence of the density maxima at the spherical surface comes from the poor treatment of the

short-range repulsion between the ions.

Figure 14 shows the ion density profiles at η = 10, where again the surface polarization causes the

ions to be repelled from the surface of the confining sphere. As compared to Fig. 13, we have a lower

ion density near the surface of the sphere, otherwise the dependence on (i) R/lB and (ii) N remain.

The splitting theory is not able to fully describe the reduced ion density near the surface of the sphere.

Consequently, the ion density becomes too high in the center of the sphere. As with the other systems

discussed previously, the theory performs worst for the case η = 10.

Finally, we present the ion density profiles for η = 0.1 in Fig. 15. In all cases, density maxima

appear near the surface due to the polarization of the dielectric interface, which attracts the ions to

the surface of the confining sphere. The theory is able to reasonably reproduce the MC simulation

results with the exception of the highest density system, where the poor description of the excluded

volume effects becomes obvious. Hence, as long as the excluded volume interactions do not dominate

the structure of the system, e.g., when the radius of the sphere is not too small, the splitting theory

appears to perform well. This holds in particular for the system with N = 100.
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V. CONCLUSIONS

In this work, we have examined systems of ions confined within a dielectric sphere. Three types

of systems were examined. The first was a set of identical ions where the charge was neutralized by

a uniform surface charge distributed on the surface of the sphere. The next was for identical ions

neutralized by a uniform volume charge density throughout the confining sphere. The final system

was ions and counterions confined within a dielectric sphere.

For the systems with a uniform surface charge, the splitting theory is able to predict the ion density

profiles fairly well for the case η ≤ 1, in comparison with the Monte Carlo simulation results. The

virial correction improves the predictions and becomes more important as η decreases and as the

ions become more confined. In the case of a uniform volume charge, the predictions of the splitting

theory worsen, although they are still reasonable for η ≤ 1. The virial correction is much more

significant for these systems. When the dielectric constant of the cavity was higher than that of

the outside medium, i.e., η > 1, the splitting theory performed poorly both for surface and volume

charge distributions. Interestingly, it was found that setting the splitting parameter σ = 0, which

corresponds treating the ion image-charge interactions as a one-body potential and the charge-charge

interactions within a mean-field approximation, leads to improved predictions; however, the results

become increasingly poorer when the confinement becomes significant. Finally, when both ions and

counterions are confined within the spherical dielectric cavity, the splitting theory provides reasonable

predictions for the ion density profiles, as long as the excluded-volume interactions between the ions

do not dominate the structure.

Note that in the systems that we have studied here, the ions are strongly confined, with respect

to the strength of their electrostatic interactions. This has provided a severe test of the splitting

theory. From this work, it appears that for these confined systems the short-wavelength fluctuations

of the ions make a significant contribution in determining the properties of these systems. These

fluctuations become especially important when the dielectric constant of the outside medium is lower

than that inside the cavity. While the strong-coupling expansion has been successful in describing

the systems with high charge densities, it relies on the counterions to be largely separated from each

other; however, in the systems we examined in this work, the confining sphere forces the ions to be

close to one another. This is most likely the cause of the breakdown of the splitting theory. Therefore,

another approximation scheme is required to treat the short-wavelength fluctuations for these systems.

We plan to pursue this in future work.
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FIG. 1. Overview of different types of systems. Systems of all types contain a spherical region of medium

1 with dielectric constant ε1 embedded in medium 2 of infinite size with dielectric constant ε2. Moreover, in

(a) region 1 is surrounded by a uniform surface charge density and contains only counterions, in (b) region 1

possesses a uniform volume charge density and contains only counterions, and in (c) both co- and counterions

are present, but no uniform charge density. In all type of systems, the mobil ions are confined within the sphere.

All the systems are electrically neutral.
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FIG. 2. Effective short-wavelength electrostatic potential generated by a uniform surface charge density as a

function of the radial position for σ/R → ∞ (black), σ/R = 1 (red), σ/R = 0.5 (green), σ/R = 0.2 (blue),

σ/R = 0.1 (gray), and σ/R = 0.01 (orange).
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FIG. 3. Optimal reduced splitting parameter σ/R for the splitting theory with the virial correction as a function

of the number of counterions N confined in a spherical cavity with a uniform surface charge density and radius

R/lB = 1 (red) and R/lB = 10 (green) for η = 1 (solid lines), η = 10 (dashed lines), and η = 0.1 (dotted

lines). In the case η = 10 and R/lB = 10, σ/R→∞.
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FIG. 4. Counterion density profiles for (a) N = 5 and (b) N = 100 counterions within a spherical cavity

with a uniform surface charge density and η = 1 for R/lB = 1 (red) and R/lB = 10 (green) predicted from

Monte Carlo simulations (solid lines), the splitting theory (dotted lines), and the splitting theory with the virial

correction (dashed lines).
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FIG. 5. Counterion density profiles for (a) N = 5 and (b) N = 100 counterions within a spherical cavity with

a uniform surface charge density and η = 10, where lines have the same meaning as in Fig. 4. Predictions of

the spitting theory with the virial correction and σ = 0 are also included (thick dashed lines).
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FIG. 6. Counterion density profiles for (a) N = 5 and (b) N = 100 counterions within a spherical cavity with

a uniform surface charge density and η = 0.1, where lines have the same meaning as in Fig. 4.
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FIG. 7. Effective short-wavelength electrostatic potential generated by a uniform volume charge density as a

function of the radial position for σ/R→∞ (black), σ/R→ 1 (red), σ/R→ 0.5 (green), σ/R→ 0.2 (blue),

σ/R→ 0.1 (gray), and σ/R→ 0.01 (orange).
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FIG. 8. Optimal reduced splitting parameter σ/R for the splitting theory with the virial correction as a function

of the number of counterions N confined in a spherical cavity with a uniform volume charge density and radius

R/lB = 1 (red) and R/lB = 10 (green) for η = 1 (solid lines), η = 10 (dashed lines), and η = 0.1 (dotted

lines).
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FIG. 9. Counterion density profiles for (a) N = 5 and (b) N = 100 counterions within a spherical cavity with

a uniform volume charge density and η = 1, where lines have the same meaning as in Fig. 4.
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FIG. 10. Counterion density profiles for (a) N = 5 and (b) N = 100 counterions within a spherical cavity with

a uniform volume charge density and η = 10, where lines have the same meaning as in Fig. 4. Predictions of

the spitting theory with the virial correction and σ = 0 are also included (thick dotted lines).
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FIG. 11. Counterion density profiles for (a) N = 5 and (b) N = 100 counterions within a spherical cavity with

a uniform volume charge density and η = 0.1, where lines have the same meaning as in Fig. 4.
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FIG. 12. Optimal reduced splitting parameter σ/R for the splitting theory with the virial correction as a function

of N , where N cations and N anions with hard-sphere radius Rion = 0.5lB are confined in a spherical cavity

with a radius of R/lB = 5 (black) and R/lB = 10 (red) for η = 1 (solid lines), η = 10 (dashed lines), and

η = 0.1 (dotted lines).
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FIG. 13. Ion density profiles for (a) N = 5 and (b) N = 100 cations/anions within a spherical cavity with

η = 1 and R/lB = 5 (black) and R/lB = 10 (red) predicted from Monte Carlo simulations (solid lines) and

the splitting theory with the virial correction (dashed lines).
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FIG. 14. Ion density profiles for (a) N = 5 and (b) N = 100 cations/anions within a spherical cavity with

η = 10, where lines have the same meaning as in Fig. 13.

32



0.0 0.2 0.4 0.6 0.8 1.0

r/R

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
ρ
(r
)/
ρ
a
v
g

(a)

0.0 0.2 0.4 0.6 0.8 1.0

r/R

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
(b)

FIG. 15. Ion density profiles for (a) N = 5 and (b) N = 100 cations/anions within a spherical cavity with

η = 0.1, where lines have the same meaning as in Fig. 13.
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