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MAXIMUM ENTROPY FLOWS
FOR SINGLE-SOURCE NETWORKS

T.T. TANYIMBOH and A.B. TEMPLEMAN

Department of Civil Engineering
University of Liverpool
P.Q. Box 147, Liverpool L69 3BX, U.K.

ABSTRACT

This paper was prompted by growing evidence that Shannon's measure of
uncertainty can be used as a surrogate reliability measure for water
distribution networks. This applies to both reliability assessment and
reliability-governed design. Shannon's measure, however, is a non-linear
function of the network flows. Therefore, the calculation of maximum entropy
flows requires non-linear programming. Hence, a simpler, more accessible
method would be most useful. This paper presents an alternative and rigorous
method for calculating maximum entropy flows for single-source networks. The
propoued method does not involve linear or non-linear programming. 4lso, it
is not iterative. Consequently, the method is very ellicient. In this paper, the
methodology is described, several examples are presented and an algorithm is

suggasted.
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NOTATION

E,, Ei. = event identified by subseript
I = get of all source nodes

K = arbitrary positive constant

N = number of nodes

ND, = set of all links or nodes im}nediataly downstream of node n

NP, = number of paths from the source to node n

NU, = set of all links or nodes immediately upstream of node n
Pu=qulTs

Py =qn|Ta

p(Ew) = probability of B

P.=p(E,) = probability of E,

go = external outflow at node {

gy = flow from node n to node j

gu = external inflow at node i

§ = Shannon's entropy

S; = entropy of outflows at node n

S, = entropy of external inflows
Ta = total outflow from node n
Ty = total supply or demand

x* = optimum value of x

1. INTRODUCTION

Very recently, there has been growing interest in the potential applications
of the maximum entropy formalism in water distribution networks. The areas
of interest, so far, have been assessment of reliability, layout optimization
and/or optimum design with reliability considerations. So far, the results have

been encouraging.

Awumah, Goulter and Bhatt** used the Shannon entropy function® as the basis
of some measures for network redundaney. The development of these measures
involved some intuitive input. They presented evidence! that the measures
could be used for the design of reliable water distribution networks. The
minimum cost gradient formulation of Quindry, Brill and Liebman’ was
modified slightly by replacing all the minimum diameter constraints by

minimum nodal entropy limits, one for each node. Awumah, Goulter and
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Bhatt* observed that the modified, non-linear model, could be used for

optimizing both the layout and diameters of the network.

Also, Awumah and Goulter! obtained trade-off curves for a sample network.
These included a curve for cost versus reliability. The reliability measure used
was node pair reliability. A second curve related cost to network entropy. The
shape of these curves showed a remarkable degree of similarity. If this holds
for water distribution networks generally, it could be interpreted as evidence

of a close relationship between entropy and (mechanical) reliability.

Tanyimboh and Templeman' have rigoroucly established the appropriate
entropy function for the flows of a looped transportation network. The
approach relies on a multiple probability space model and the conditional
entropy formula of Khinchin®. It applies to any network with known nodal
inflows and outflows. Also, it requires a specified flow direction for each are.
Maximum entropy flows were calculated for a sample network and it was
observed that, for the sample network, there was uniformity in the probability
that certain key nodes receive their flow from each source. The impertance

of this uniformity in the context of reliability was highlighted.

Subsequently, Tanyimboh and Templeman® collated evidence of the need for
uniformity of the flows and/or diameters of a distribution network. The
multiple probability space conditional entropy measure was then incorporated
as a constraint in a non-linear cost minimization model. They observed that
as the specified lower bound upon the value of entropy was increased, so too
did the resilience of the resulting design. Resilience represents the ability to
handle load patterns which are different from those specifically designed for;
in the example of Ref. [10] these different cases were pipe failures and/or large
fire-fighting demands. Also, it was noted ihat, on average, the diameters
increased. This was taken to be evidence of a correlation between entropy

and (mechanical) reliability. Another related observation, and perhaps the
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most important, was that implicit treetype branchedness (Templeman)

decreased as the entropy increased.

The above research provides ample justification for more extensive research
into the properties and other potential applications of maximum entropy flows.
However, the entropy function is non-inear. Also, maximum entropy flows
must satisfy flow equilibrium at each node. Consequently, the determination
of maximum entropy flows needs constrained non-linear programming. This
is rather restrictive. A simpler way of calculating maximum entropy flows
would therefore be highly desirable. This paper presents a simple method for
calculating maximum entropy flows for single-source networks. The proposed
method is path based. However, explicit path enumeration is not used. This
has been made possible through a simp.e, but efficient, algorithm for
determining the number of paths from the source to each node. Also, neither
linear nor non-linear programming is involved. Further, unlike non.inear
programming, the procedure is not iterative. Thus the method has a very high

computational efficiency.

In this paper, first, the multiple probability space entropy function is
presented. Then, some of the resulis obtained by Awumah, Goulter and
Bhatt! are interpreted on the basis of this function. This is followed by a
description of the proposed method of calculating maximum entropy flows for
single-source networks. Examples are solved and it is shown that the results
are the same as those given by maximizing the entropy subject to continuity
at each node. Also, an algorithm for determining the number of paths from
the source to each node is presented. Finally, another algorithm, for

calculating maximum entropy flows for a single-source network is presented.

2. ENTROPY FUNCTION FOR LOOPED FLOW NETWORKS

For a distribution network with loops and all the flow directiona specified,

Shannon’s entropy may be written as in Eq. (1),



N
SIK =Sy+ ) P.S, 1)
n=l

where S is the entropy (Shannon’), K an arbitrary positive constant, and
P., n=1,..,N, the probability of flow arriving at node , n =1,..,N, where N
is the total number of nodes in the network. The value of P, may be obtained
from Eq. (6), which will be derived shortly. The other terms are defined below.

The entropy Pf the external inflows is S; where

Sy=-— Z‘}W Inpy; (2

ial

In the above equation, [ is the set of all source nodes and py is the proportion

of the total supply to the network that is provided by source i. Its value is

given by
Poi = S ’%.c:;’ viel (3)

where gu is the external inflow at node # and T, is the total supply or demand.
In Eq. (1), 8., n =1,...,NV, is the entropy of the outflows, including any demand,
at node n, n=1,.,N. It is defined by Eqs. (4) and (6) in which p, is the
fraction of T, carried by link nj, where T,, n=1,..N, is the total outflow,
including any demand, from node n, n =1,..,N. Also, py, ¥n, j =0, represents

the fraction of T, that satisfies consumption at node n.
Sy =- E Prilnpy, Vn )
nieND,

The set ND,, n =1,...N, consists of all the ocutflows, including any demand,

from node n, n=1,...N.

W Iy vnjeND, (6)

Pyj=
T ©
njaND,

The symbol g is used for both internal and external inflows and outflows. For
an external inflow, the first subscript will be zero and the second, the source
node number. Also, the second subscript for a demand will be zero whereas
the first will be the number of the corresponding node. Otherwise,
9y, &, j=1,..N, is the pipe flow from node i to node j. Tanyiml;oh and
Templeman' stated that Eq. (6) is a convenient formula for the node

probabilities, P,, n=1,...,N.
P.=T/T,,¥n (6)

There follows a simple derivation of this equation. Define E,, n=1,..N, as
the event that a particle in the network reaches node n, n=1,..N. Then,
P.=p(E,), n=1,..N, is the probability that the event E,, n =1,..N, occurs.
In general, each event is conditional upon the events upstream of it. These
events are consequently not independent. The probability rule for conditional

events may therefore be written, as in Eq. (7), for these events.
PE N E,) =p(E,|E)p(E,), Vn, VkeNU, ()]

where NU,, n=1,_N, is the set of all link and external inflows at, and all
nodes immediately upstream of, node n, n =1,..,N. By virtue of Eq. (7), the
entropy of a network ¢annot be a simple sum of the entropy at each node (

Khinchin®).

The ratio gqy/Ty, i, j=1,..N, is the flow carried in link ij, expressed as a
proportion of the total supply. In other words, /T, is the probability that a
particle entering the network will flow through link ij. For the set of all links

converging on a node, these probabilities are mutually exclusive. A particular
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particle can arrive at the node through any, but only one, of the links. Also,
as flow cannot arrive at the node other than by the links converging on that
node, the set is exhaustive. For a node n,n=1,...N, E. happens whenever
there is flow in a link kn, kn e NU,. Let E.., ¥Yn, kn e NU,, be the event

that there is flow in link &Zn. Thus
P(E,|Ey,) =1, Va, VkneNU, (8)

The probability of flow arriving at node r is the joint probability that flow

reaches the node by all links supplying it, i.e.

pEI=p( || (EWNE,)) @

kne NU,

Therefore, applying Eq. (7) for p(E,, N E.),

pE) =5 | ] (BunE =~ Y pEuNE)= Y, pBh). n=1..N. (10)
kne NU, kne NU, kne NU,

The second equality of Eq. (10) holds because the E., VYr, Yin € NU,, have

been shown to be mutually exclusive. As explained, p(E,.) is given by qu/T:.

Substituting for p(Ei.) in Eq. (10) gives the desired result, Eq. (6).

The Egs. (1) to (6) apply to a network with loops, in which the flow direction
in all pipes is defined. Therefore, to use Eq. (1), any non-looped portions of

a network under consideration should be omitted when evaluating the network

entropy.

The equations suggested by Awumah, Goulter and Bhatt' will be examined
next. These equations appear superficially to resemble the current Eqs. (1) to
(6} but are different in detail. Reasons for preferring the current equations will

be presented. Egs. (6) and (8) of Awumah, Goulter and Bhatt! are reproduced
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here as Eqgs. (A) and (B). In Eqs. {A) to (C), the original notation has been

preserved, where possible,

N nd)

A

S==)" (a;/Q0 In(gyIQ (4)
Jml im]

where § is the network entropy and & is the sum of all link flows, as opposed

to T, which is the total supply or demand. Also, i(j) is the number of internal

inflowe at node j.

N N
§= @RS - ) (@R InQ/Qy ®
= :

=1

in which 5, is the entropy of the internal inflows at node j. It is the same as

S, in the original publication. Therefore,

ng)
5=- Y 9,/Q) In(qyi@Q), Jj=1...N ©

=l
Also, @ is the sum of the internal inflows at node j, as opposed to T; which

is the sum of all inflows, including external inflows, at the node.

Comparing (A) to (C) with the current (1) to (6), the flows or elementary
events, gy, overlap. This is readily seen from the consideration that
qMNan#0, ¥i,j,k=1,.N. It follows that the probability-like terms q,/@; in
Eq. (A) are not independent. As such, Eq. (A) (or the equivalent Eq. (B)) is

not appropriate for those terms (Shannon').

Also, perhaps the most obvious difference between Egs. (1) and (A) is that the
latter does not (directly) account for the spatial distribution of the external

inflows and outflows. In Eq. (1), the relative magnitudes of the sources is
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accounted for by S,. Also, the abstraction at each node is accounted for. This
is achieved by defining the nodal entropies S, as the entropy of all the

outflows, including consumption, at each node.

3. CALCULATING MAXIMUM ENTROPY FLOWS FOR
SINGLE-SOURCE NETWORKS

In a single-source network, all paths start at the source. Consider any demand
node served by more than one path. Given no further information about the
paths, there is no reason for any path to be preferred over any other path to
the demand node. This accords with Laplace’s principle of insufficient reason.
More appropriately, it is a direct consequence of the maximum entropy
formalism®*. Therefore, all the paths supplyirg a node should have the same
probability of doing so. This means that flow to the node should be distributed
equally amongst all the paths supplying the node.

Therefore, to obtain the maximum entropy [ows, each node should be taken
in turn and its demand divided equally amongst all paths supplying the node.
The final network flows are then obtained by superposition of these path flows.
That is, the flow for all paths through a link should be added to obtain the
flow in that link. These are the link maximum entropy flows. The maximum
value of the flow entropy for the network may then be calculated, using Eq.
).

The network of Figure 1 will be used to demonstrate the above points. The
demand at each node is treated separately, as shown in Figure 2. In Figure
8, the flow in each arc is obtained by adding the flow in all paths using that
arc. These are the maximum entropy flows. Substituting these flows in Eq.

(1) gives (S/K) = 2.159

To check that the above values are correct, Eq. (1) was maximized, subject to

flow equilibrium at each node and non-negativity of all the link flows. First,
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all t.he.l‘lowa were expressed in terms of three selected flows using four of the
nodal continuity equations. Equilibriurn at the fifth node holds automatically
because the inflows balance the outflows. The resulting objective function,
with only three variables, waa then maximized subject to lower bounds on
these variables. The lower bounds were calculated from the non-negativit.y
conditions. The NAG library routine E04JAF was used for the maximization.

The results are shown below. They are identical to those obtained above.

(SIK, Q16 Qi3 T2 Q350 T12e G50 Ta)

= (2.159, 5.000, 18.000, 18.000, 16.000, 26.000, 8.000, 10.000)

Maximum Entropy Flows Algorithm um.:l I'xample

The method of superposition used in Figures 2 and 3 is not very plractical.
First, nodal flow routing, as in Figure 2, requires the tracing of all paths to
each node. Also, a knowledge of the interdependencies between the paths
serving each node is needed. For example, consider Figure 2d. Link 1-2 carries
a flow of 16 units because it is known that the link is shared by two paths
serving node 5. On the other hand, the flow in link 13 is 8 units because it
is known that only one path serving node 5 uses that link. Furthermore, in
a looped network, each link will be processed many times, as in Figure 2, for
example. It would be more efficient if the flow in each link could be calculated
in a single operation. In consequence, the approach of Figure 2 and 3 is quite
laborious. Also, the effort needed increases very significantly as the number
of nodes or links increases. The method to be described next is derived from
the method of superposition of path flows which has been presented. However,
it addresses all the above weaknesses, except path enumeration, which will be
dealt with shortly. The description of the method is fairly general but is based
on the network of Figure 1 for clarity. Following the description, algorithms

are presented for the proposed method.
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Consider Figure 4. The number of paths to each node is enclosed in a box next
to the node. Nodes 4 and § are terminal nodes, which do not have any link
outflows. The procedure starts with any terminal node; say, node 4. The total
outflow at that node is divided by 3, this being the number of paths to it. The
quotient is then multiplied by 1 and 2 respectively, these being the respective
number of paths to nodes 1 and 3, the immediate upstream supply nodes to

node 4. The products, respectively, are the flow in links 14 and 34.

-The next step is to choose any node immediately upstream, whose link
outflows have all been calculated. The procedure explained for node 4 is
repeated with all the appropriate upstream nodes taking the place of nodes 1
and 3. Returning to Figure 4, both nodes 1 ar.d 3 have unknown link outflows.

In consequerice, they cannot be treated yet.

At this point, the procedure stops and re-starts at any terminal node that has
not yet been dealt with. That is, node 5 in the present example. If node b is
processed as explained for node 4, the flow in link 25 is B units and for link

3.5, 16 units.

At this stage, the only unprocessed node with all its outflows known is node
3. Its total outflow is 36 unite. This flow is partitioned according to the
aforementioned procedure in the ratio 1:1 between the two incoming links.
This is equivalent to dividing the total ocutflow from node 3 by 2 and

multiplying the resuit by 1 in each case.

The flow in link 1-2 can now be found. It is the sum of the outflows from node

2, including the demand at node 2. The process ends here.

The flows obtained by the procedure just described are identical to those found
by superposing equal path flows for each node.

1

A further refinement to the method concerns path enumeration. Path
enumeration is not a realistic proposition, even for networks of only modest
size. However, there is a way round thie difficulty. It can be observed, for
example in Figure 4, that each boxed number is the sum of all the boxed
numbers immediately upstream. In other words, the number of paths to each
node is the sum of the number of paths to all nodes upstream of, and directly
supplying, the node being considered. This is a fact which ean be exploited
to weight the nodes and thus avoid explicit path enumeration. The steps

involved are as follows.
1. Assign [1] to the source.

2. Select any node whose upstream nodes lave all been processed. Add the
numbers assigned to all nodes immediately upstream of the chosen node.

Assign the total to the present node.
8. Repeat step 2 until all nodes have been processed.

Throughout, the assumption that the direction of flow in each link is known
continues to apply. Also, it must be noted that this method of calculating the

number of paths to each node applies to single-source networks only.

A final detail of the proposed method for calculating maximum entropy flow
for single-source networks is concerned with the order in which nodes can be
processed when weighting the nodes or calculating link maximum entropy
flows. For both node weighting and flow calculation, it is desirable to know,
at each stage, which nodes can be processed. When calculating flows, a node
-cau be processed only if all its link outflows are known. Consider Figure 4
again. In describing how link flows are calculated, the nodes were selected in
the order: 4,6,3,2. Another possible order is: 5,4,3,2. These two sequences are,
respectively, the reverse of the two possible sequences for calculating the

number of paths supplying each node. Consequently, a possible nodal

12



sequence for flow distribution will be available if the nodes are numbered such
that the order matches the node weighting sequence, as in Figure 4, for
example. Thus the right sequence is obtained if each node is numbered only
after all nodes upstream of it have been numbered. The algorithms presented
subsequently herein, for node weighting and for calculating maximum entropy
flows, assume that the nodes of the network have been numbered according
to this convention. The nodes may therefore be numbered with the following

algorithm.

Node Numbering Algorithm
1. Number the source with 1, Set n to 1.

2. Increase n by 1.

3. Select any node whose immediate upstream nodes have all been numbered.
Number it with n.

4. If n =N, exit. Otherwise, continue,
6. Go to step 2.

Simple algorithms are now presented for node weighting and flow distribution,
respectively. Before applying these algorithms, the nodes must first be
numbered with the node numbering algorithm. Define NP,, n=1,.N, to be

the number of paths from the source to node n,n = 1,..,N.

Node Weighting Algorithm
1. Set n to the source number, 1. Set NP. to 1.
‘2. Increase n by 1.
3. Calculate NP,:
NP,= ) NP,
ke NU,
4. If n =N, exit. Otherwise, continue,.
6. Go to step 2.

Flow Distribution Algorithm
1. Set n to the number of nodes, N.
2. Calculate T,:

8. Calculate gu,, YRneNU, :
Dhn = Tu X _‘bN_I;L
n
If n = 1, go to step 7. Otherwise, continue.
Reduce n by 1.

Go to step 2.

NP oo

Calculate S, if necessary. Exit.
4, GENERAL NETWORKS

The algorithms in this paper are rigorous for single source networks.
However, they are in general inapplicable to multiple-source networks, for the
following reasons. The proposed method is a direct application of the
following result: maximization of Shannon's entropy function, subject only to
normality of the probabilities, leads to the uniform probability distribution in
which all the probabilities are equal. The corresponding result for a general
network with multiple sources requires all the sources to contribute the same
quantity of flow to the total supply; S; in Eq. (2) attains its highest possible
value if all the pu are equal. In general, this condition will not be met as the
flow from different sources will usually be unequal. Furthermore, the flow
directions in a multiple-source network will be such that, for each node, the

path flows will be unequal in general.

However, in any network, if the flow directions and the distribution of the
source flows are such that all paths serving a node can carry the same amount
of flow, the proposed method will give the right result. This also applies to

any multiple-source network that is effectively operating as a single-source
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network. Two examples are next provided to illustrate some of the above
points. However, it must be stressed that the proposed method is intended as

an alternative to numerical optimization, for single-source networks only.

A sample two-source network in which all the conditions for uniformity of the
path flows are satisfied is shown in Figure 6a. Link 1-2 is a direct connection
between the sources, The node weighting algorithm may be applied to
multiple-source networks with source-source connection. However, each source
is given a weight of unity in step 1. Thus, suppose the sources were replaced
by a supersource numbered 0 with 55 units. Suppose, further, that link 1-2
were replaced by a direct link from the supersource to nodes 1 and 2
re.pectively as shown in Figure 5b. If the node weighting algorithm is carried
out on this transformed, but equivalent network, both nodes 1 and 2 would be
assigned a weight of 1. This provides confirmation that each source in a
multiple-source network, with all sources interconnected, should have a weight
of unity. It may be noted that there need not be a direct link for every
source-source combination. It is sufficient that each source be directly

connected to at least one other source.

To obtain the maximum entropy flows for multiple-source networks with
source-source connections, the flow algorithm may be applied as described for
single-source networks, but- with a slight modification. In step 2, (T, — qu) i5
found, and used in step 3, instead of T, . The external inflow gu will be zero
for all nodes other than source nodes. Also, this modified version of the
algorithm may be used for networks having a single source. Finally, using Eq.
(1), the value of S* may be calculated, once the maximum entropy flows are
available. . The problem of Figure 5a was solved by both numerical
optimization using the NAG library routine E04JAF and the present method.
Both methods gave the same result, of which the flows are shown in Figure

Ba.
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However, in a general network, if at least one of the requirements for equality
of path flows is not satisfied, the single-source method cannot be used. For
example, in Figure 6, the direction of flow in the source-connecting link is the
reverse of the direction in Figure 6a. The problem of determining the

maximum entropy flows for the network of Figure 6 cannot be solved by the

. present single-source method. This problem was solved using the NAG library

routine EMJAF. The vector describing the optimum point ia
(SIK, a3, 013 936 9350 210 T14s Tas)
=(1.947, 12.917, 28.871, 8.871, 22.917, 0.000, 6.129, 7.083)

That the optimum point contains a zero element is an indication that the
sinzle-source method will not solve this problem. This example shov.s that the

present method is in general inapplicable to multiple-source networks,

Comments on Figures 5a and 6

Several interesting comments may be made on the maximum entropy flows of
Figure 6a and 6. Figure 6 has a lower value of 5° = 1.947 than Figure 5a,
whose value is 2.020. This bodes well for the possible use of flow entropy in
layout and reliability optimization for several reasons. First, ¢i,, but not gj,
being zero is desirable, It would be reasonable to augment a smaller source for
even greater flexibility. On the other hand, because of the position of node
3, there is no need for flow to be transferred from source node 2 to source node
1. At the optimum, the network of Figure Ba, with three loops, has more
redundancy than the network of Figure 6, with two loopa. IL is therefore fitting
that Figure 5a, with a better layout and higher level of flexibility/redundancy,
should have a higher value of entropy. Also, by correctly setting certain link
flows to zero, entropy maximization has the capability of identifying
superfluous links. This is highly desirable in the context of layout
optimization. Furthermore, in both Figures 5a and 6, the flow from node 3 to

node 4 is greater than the direct supply from source node 1 to node 4.
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Similarly, the flow from node 8 to node 5 is greater than the direct supply from
source node 2 to node B, in both figures. This is desirable, from a
resilience/flexibility standpoint, if there is variation in the source supplies.
Node 3 has a direct connection to both sources and the flow in links 34 and
3-5 may vary considerably if the source supplies vary. Therefore, designing
these links to have a larger capacity would enhance the network’s flexibility.
Similarly, a larger capacity for these links is desirable if the demands at nodes

4 and 5 vary. The same arguments as for varying source supplies apply.

5. CONCLUSIONS AND SUMMARY

A rigorous, simple, non-iterative algorithm for caleulating maximum entropy
flows for single source networks has been wresented. Although the method is
path-based, a simple node-weighting technique is used to aveid path
enumeration. The above properties give the procedure a high computational
efficiency. Thie can be very useful in a design or relinbility framework, where
very many function evaluations may be necessary. The routine lends itself to
both manual computations, for small networks, and implementation on a

computer, for large systeme.

A suggested possible application of the proposed approach is in the design of
flexible single-source water distribution networks by linear programming. In
the Alperovits and Shamiﬂ method, for example, the proposed routine would
give the flows that the pipes should be designed to carry. The gradient step
of the linear programming gradient method would not be needed. Also it
would be useful to compare the reliability of such a design to other designs.
Furthermore, there is some evidence (Tanyimboh and Templeman™) that the
cost of a water distribution network designed to carry maximum entropy flows
may not be much higher than if the network is designed with minimum-sized

loop-completing links.
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FIGURE CAPTIONS

Figure 1  Single-source network.
Figure 2 Equal path flows from the source (node 1) to each of the demand

nodes 2,3,4 and 5. 1 O 59
Figure 3 Maximum entropy flows for the network of Figure 1 found by

superposing the path flows of Figure 2.

Figure 4 Number of paths to each node for the network of Figure 1.

Figure 6a  Maximum entropy flows for a two-source network with equal 2 1
path flows to each demand node.

Figure 5b  Supersource representation of the network and flows of Figure
5a.

Figure 8 Maximum entropy flows for a tw--source network with unequal
path flows to each demand node.
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Figure 2 Equal path flows from the source (node 1)
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Figure 3. Maximum entropy flows for the network

to each of the demand nodes 2,34 and S

of Figure 1 found by superposing the

path flows of Figure 2
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Figure 4 Number of paths to each node
for the network of Figure 1
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Figure 5a Maximum entropy flows for a two—source
network with equal path flows to each
demand node.
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Figure 6 Maximum entropy flows for a two—source

network with unequal path flows to each
Figure 5b Supersource representation of the demand node

network and flows of Figure S5a.




