Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Capacitive sensors for offshore scour monitoring

Michalis, Panagiotis and Saafi, Mohamed and Judd, Martin (2013) Capacitive sensors for offshore scour monitoring. Proceedings of the ICE - Energy, 166 (4). pp. 189-197. ISSN 1751-4223

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

One of the main challenges in the design and operation of offshore wind turbines arises from the uncertainty about maximum scour depth around their foundations. Scour action can lead to excessive excavation of the surrounding seabed and is being considered as a major risk for offshore wind farm developments. An ability to gather information concerning the evolution of scouring will enable the validation of models derived from laboratory-based studies, the assessment of different engineering designs and the development of improved scour countermeasure techniques. However, real-time scour data are not being collected due to a lack of available instrumentation techniques. This paper proposes a new scour monitoring technology for offshore wind turbine installations. The monitoring system consists of arrays of small capacitive scour probes installed around the foundation structure and linked to a wireless network to enable remote data acquisition. Based on this research, it is concluded that the sensor is capable of exhibiting high sensitivity to scour and sediment deposition processes for common sea floor mediums under different temperature conditions in saline water. The proposed monitoring system has considerable potential for field applications that will contribute to improving the resilience and sustainability of offshore structures.