Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

A method of normalizing cathodoluminescence images of electron transparent foils for thickness contrast applied to InGaN quantum wells

Boyall, N.M. and Durose, K. and Watson, I.M. (2003) A method of normalizing cathodoluminescence images of electron transparent foils for thickness contrast applied to InGaN quantum wells. Journal of Microscopy, 209 (1). pp. 41-46. ISSN 0022-2720

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The uniformity of panchromatic cathodoluminescence (CL) from In0.09Ga0.91N/GaN quantum wells at 100 K was investigated using a combined transmission electron microscope-cathodoluminescence instrument. A technique for correcting CL images of electron-transparent wedge specimens for thickness contrast artefacts is presented. The foil thickness was estimated using the dynamical formulation of the relationship between the thickness and the (experimentally observed) transmitted electron intensity. For a given thickness the CL intensity was calculated using the Everhart-Hoff depth-dose function and also taking into account surface recombination losses. Experimental CL images were normalized by dividing by the calculated CL value at each point. The procedure was successful in calculating the underlying materials contrast in CL images of thin specimens of InGaN single quantum wells. Non-uniformities in the CL emission on the scale of similar to0.7 mum were observed.