Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Microreflectivity studies of wavelength control in oxidised AlGaAs microcavities

Macaluso, R. and Robert, F. and Bryce, A.C. and Calvez, S. and Dawson, M.D. (2003) Microreflectivity studies of wavelength control in oxidised AlGaAs microcavities. Materials Science and Engineering B, 102 (1). pp. 317-322. ISSN 0921-5107

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Wet oxidation of GaAs/AlGaAs structures is an important technique in the processing of advanced devices such as vertical cavity surface emitting lasers (VCSELs). In one VCSEL application, the low-index and electrically-insulating AlxOy layers have been used to obtain high-reflectivity and broad bandwidth distributed Bragg reflector mirrors (DBRs). A further recent development has shown that combined lateral-vertical oxidation of intracavity AlGaAs layers can be used to tune the resonant wavelength of a semiconductor microcavity. The slow oxidation rate limits the lateral scale of practical wet oxidation to mesas structures of 50-100 m in width. Therefore post-processing assessment of spectral changes requires microreflectivity measurement capability with high spatial resolution. In the following, we describe the fabrication and assessment of microcavity structures in the 1.3 m range. The micro-reflectivity set-up consists of microscope-objective focussing of broadband light, combined with optics to relay the data to a spectrograph, and a CCD camera for alignment. This simple set-up allows the measurement of calibrated reflectivity for features down to a few 10's of m in size over a large spectral range (600-1800 nm). We present microreflectivity measurements of wide-bandwidth oxidised DBRs, and most significantly, for the first time to our knowledge, of oxidation control of the resonant wavelength of a microcavity in the 1.3 m range.