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Abstract: This paper develops methods for Bayesian VAR forecasting when the
researcher is uncertain about which variables enter the VAR and the dimension of the
VAR may be changing over time. It considers the case where there are N variables
which might potentially enter a VAR and the researcher is interested in forecasting
N∗ of them. Thus, the researcher is faced with 2N−N

∗
potential VARs. If N is large,

conventional Bayesian methods can be infeasible due to the computational burden of
dealing with a huge model space. Allowing for the dimension of the VAR to change
over time only increases this burden. In light of these considerations, this paper uses
computationally practical approximations adapted from the dynamic model averaging
literature so as to develop methods for dynamic dimension selection (DDS) in VARs.
In an inflation forecasting application, we show the benefits of DDS. In particular, DDS
switches between different parsimonious VARs and forecasts appreciably better than
various small and large dimensional VARs.
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1 Introduction

Vector autoregressions (VARs) are among the most popular tools in modern empirical
macroeconomics. Large theoretical and empirical literatures exist on Bayesian VAR
forecasting. There are many modelling and specification choices one faces when working
with VARs and various Bayesian methods have been developed for dealing with them.
Examples of recent surveys or empirical papers investigating such choices include Koop
and Korobilis (2009), Carriero, Clark and Marcellino (2011), Del Negro and Schorfheide
(2011) and Karlsson (2012). However, one important aspect of specification choice has
been relatively neglected in the Bayesian VAR literature. This is the choice of the
dimension of the VAR (i.e. which variables to include as dependent variables in the
VAR).
Issues relating to the dimension of a VAR issue have increased in importance due to

the growth of the large VAR literature. Papers such as Banbura, Giannone and Reichlin
(2010), Carriero, Clark and Marcellino (2011), Carriero, Kapetanios and Marcellino
(2009), Giannone, Lenza, Momferatou and Onorante (2010) and Koop (2011) work with
VARs that have tens or even over a hundred dependent variables. In this literature, it
is common for the researcher to be interested in forecasting a small number of variables
(e.g. inflation or unemployment). There are many other variables which are potentially
useful for forecasting and, if so, they should be included in the VAR. However, most
of these other potential variables might be irrelevant and omitting them would lead to
a more parsimonious VAR and improved forecasts. The problem is that the researcher
does not know, a priori, which of these extra variables should be included. This problem
is addressed in the large VAR literature by simply including all the potential dependent
variables, but using an informative prior to shrink their effects so as to avoid over-fitting.
It is worth emphasizing that this shrinkage is done on the VAR coeffi cients, but the
dimension of the VAR always remains the same. Other approaches to VAR variable
selection, such as Korobilis (2012), also focus on the choice of explanatory variables
(lagged dependent variables), but maintain the full set of dependent variables at all
points in time.
An alternative to shrinking coeffi cients is to develop statistical methods for select-

ing the appropriate dimension of the VAR. This is the challenge taken up in the small
Bayesian literature on VAR dimension selection (see, e.g., Andersson and Karlsson,
2009, Jarocinski and Mackowiak, 2011 and Ding and Karlsson, 2012). One contribu-
tion of the present paper is to add to this literature, developing a new method for VAR
dimension selection. However, the major contribution of this paper lies in doing dimen-
sion selection in a time-varying manner. That is, our method allows for the dimension
of the VAR to change over time. Thus, the forecasting model may switch from, e.g.,
a small VAR to a larger VAR as the relevant set of forecasting variables switches over
time. When forecasting a particular variable or set of variables, other predictors can
enter and leave the VAR in a data-based manner so as to improve forecasting per-
formance. For instance, our application involves forecasting inflation. Our approach
allows a univariate AR model to be used to forecast inflation at some points in time,
bivariate VARs (e.g. involving inflation and another predictor such as unemployment
or the oil price) at other times and n-variate VARs at other times. We allow for every
possible combinations of up to ten dimensional VARs (i.e. n = 1, 2, 3, .., 10). Thus,
if N is the maximum VAR dimension and there are N∗ variables we are interested in
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forecasting, we are choosing between 2N−N
∗
VARs at each point in time.

Allowing for such dimension switching has, too our knowledge, only been addressed
in the Bayesian literature by Koop and Korobilis (2012) in a different context (with
time-varying parameters in the VAR) and a vastly reduced model space involving 3
VARs instead of the 2N−N

∗
VARs considered in the present paper. Here we are faced

with a huge model space, unless N is very small or N∗ is very close to N . This huge
model space means that even standard Bayesian methods which do not allow for dimen-
sion switching will be computationally burdensome or infeasible. For instance, simply
calculating marginal likelihoods for 2N−N

∗
VARs will be computationally daunting even

if one is working with a homoskedastic VAR with natural conjugate prior. Allowing for
empirically important extensions such as heteroskedasticity will increase this burden.
Further allowing for VAR dimension switching would add even greater complications.
In light of these computational restrictions, we implement VAR dimension switching
using an approximate method. This approximate method extends and adapts the dy-
namic model averaging (DMA) methodology of Raftery, Karny and Ettler (2010). This
approach was developed for time-varying parameter (TVP) regression models, but we
adapt it for VARs. A key component in this approach is the predictive likelihood (i.e.
the predictive density for the dependent variables evaluated at the observed outcome).
With VARs of different dimensions, the predictive likelihoods are not comparable since
the different VARs have different vectors of dependent variables. To surmount this
problem, we adopt a strategy used in Andersson and Karlsson (2009) and Ding and
Karlsson (2012) and use the predictive likelihood for the dependent variables which are
common to all models (i.e. the N∗ variables we are interested in forecasting). It is also
worth noting that DMA, as it name suggests, is a method for model averaging. How-
ever, it can also be used for model selection and, in this paper, we use it in this sense
(although it is straightforward to adapt our approach to do model averaging). Thus, we
use the terminology dynamic dimension selection (DDS) to describe our methodology
which allows for VARs of different dimension to be selected in a time-varying manner.
In an inflation forecasting exercise, we find our DDS methodology to forecast better

than several standard, fixed-dimensional, VAR approaches. We show how substantial
dimension switching does occur and precisely which variable(s) enter/leave the selected
inflation forecasting model as time evolves.

2 The Econometrics of Bayesian VARs

Let yt be an N -vector containing all the potential dependent variables in the VAR. Our
model space is defined through the following set of VARs:

y
(m)
t = Z

(m)
t β(m) + ε

(m)
t ,
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for t = 1, .., T where ε(m)t is i.i.d. N
(

0,Σ
(m)
t

)
, y(m)t is an n × 1 vector containing n of

the N variables in yt,

Z
(m)
t =


z
(m)
t 0 · · · 0

0 z
(m)
t

. . .
...

...
. . . . . . 0

0 · · · 0 z
(n)
t

 ,

and z(m)t is a row vector containing an intercept and p lags of each of the n variables in
y
(m)
t .
Our model space is defined by these m = 1, ..,M VARs. We divide the dependent

variables into a set of N∗ variables that we are interested in forecasting, yft , and the
remainder, yrt . y

(m)
t always includes yft and the different models are defined by different

subsets of yrt . Since there are 2N−N
∗
possible subsets of yrt , we have M = 2N−N

∗
VARs.

Analytical results exist for posterior and predictive analysis with homoskedastic
Bayesian VARs when a natural conjugate prior is used. However, in many applications
it is important to allow the errors to be heteroskedastic. When heteroskedasticity is
present, analytic posterior and predictive results are lost and an exact Bayesian analysis
requires the use of computationally demanding MCMC methods. With large model
spaces, doing MCMC in every model can be computationally infeasible. However,
if Σ

(m)
t is a known matrix, analytical results are again available. For this reason, we

replace Σ
(m)
t with an estimate. In particular, we use an Exponentially Weighted Moving

Average (EWMA) estimate to model volatility (see RiskMetrics, 1996 and West and
Harrison, 1997):

Σ̂
(m)
t = κΣ̂m

t−1 + (1− κ) ε̂
(m)
t ε̂

(m)′
t , (1)

where ε̂t = yt − Z(m)t E
(
β(m)|Datat

)
where Datat is data available through time t and

E
(
β(m)|Datat

)
is the posterior mean of β(m).1 EWMA estimators require the selection

of the decay factor, κ. In our empirical work, we work with various values of the decay
factor in the interval [0.90, 0.99].
We also consider a homoskedastic variant of our VARs. In this case, we use a

standard recursive estimate. When forecasting using data through time t, we estimate
Σ(m) as

Σ̂(m) =

∑t
i=1 ε̂

(m)
i ε̂

(m)′
i

t
.

With Σt being treated as fixed, a normal prior for β
(m) will lead to an analytical

posterior and one-step ahead predictive density. We use a version of the popular Min-
nesota prior (see Doan, Litterman and Sims, 1984 and Litterman, 1986) similar to that
used in Banbura, Giannoni and Reichlin (2010) and Carriero, Clark and Marcellino
(2011) and many other recent papers. This prior depends on one shrinkage parameter,

1In our empirical work, the initial condition, Σ̂0, is set to be the sample covariance matrix using an
initial τ = 48 months of data. Our forecast evaluation begins in month τ + 1.
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λ,2 and is given by
β(m) ∼ N

(
β(m), V (m)

)
. (2)

We shrink towards random walks by setting all elements of β(m) to zero except for the
elements corresponding to the first own lag of the dependent variable in each equation.
These elements are set to one. The degree of shrinkage is controlled by V (m) which
is assumed to be a diagonal matrix. The elements corresponding to the intercepts in
each equation are set to large numbers (i.e. a noninformative prior is used for the
intercepts). All other diagonal elements are set to λ

r2
for r = 1, .., p. That is, the prior

variance on the rth lag of a dependent variable is λ
r2
thus ensuring greater shrinkage on

more distant lags. The shrinkage parameter, λ, is estimated from the data as described
below.3 The precise formulae for posterior and one-step ahead predictive density are
available in many sources (e.g. Koop and Korobilis, 2009) and will not be reproduced
here.

3 Model Switching Using Forgetting Factors

The aim of this paper is to do model selection in a time-varying manner. To do this,
we adapt methods developed in Raftery et al (2010) to our VAR context. Raftery et
al (2010) refer to their methods as DMA, although the methods can also be used for
dynamic model selection (DMS) where a different model may be selected as the fore-
casting model at each point in time. Raftery et al (2010) provide a complete derivation
and explanations of the attractions of DMA and how it can over-come the computa-
tional burdens associated with a high dimensional model space. The reader is referred
to their paper for such details and only a practical summary is provided here.
The goal of DMS is to calculate πt|t−1,m for the m = 1, ..,M VARs. πt|t−1,m is the

probability that model m is the forecasting model at time t given data available at time
t − 1. DMS involves selecting the model with highest value for πt|t−1,m at each point
in time and using it to forecast yft . Since πt|t−1,m changes over time, the forecasting
model can switch over time. Calculating πt|t−1,m using a fully defined Bayesian model
(e.g. involving a Markov transition matrix to model the switches between forecasting
models) will typically lead to over-parameterization worries and be computationally
burdensome unless the number of models is small. But Raftery et al (2010) develop
a fast recursive algorithm for calculating πt|t−1,m under an approximation involving a
so-called forgetting factor.
A key ingredient in this algorithm is the predictive likelihood, which is a measure of

forecast performance. We denote the predictive density for the variables being forecast
(yf) by pm

(
yft |Datat−1

)
. The formula for the predictive density for the VAR (with

normal prior and Σt replaced by an estimate) is available in standard sources such as
Koop and Korobilis (2009). The predictive likelihood is this predictive density evaluated
at the actual realization which we denote by ỹft . We stress that, following Andersson and

2The extension to multiple shrinkage parameters is theoretically straightforward, but would increase
the computational burden.

3The slight difference in prior formulation from, e.g., Carriero, Clark and Marcellino (2011) is due
to the fact that we standardize all of our variables. This standardization is done by subtracting off the
mean and dividing by the standard deviation calculated using the first τ = 48 observations.

5



Karlsson (2009) and Ding and Karlsson (2012), we are using the predictive likelihood,

pm

(
yft = ỹft |Datat−1

)
, for variables which are common to every model.

The algorithm begins by specifying initial model probabilities π0|0,m form = 1, ..,M .
In our empirical work we adopt the noninformative choice π0|0,m = 1

M
. It then uses a

model prediction equation using a forgetting factor α:

πt|t−1,m =
παt−1|t−1,m∑M
j=1 π

α
t−1|t−1,j

, (3)

and a model updating equation of:

πt|t,m =
πt|t−1,mpm

(
yft = ỹft |Datat−1

)
∑M

l=1 πt|t−1,lpl

(
yft = ỹft |Datat−1

) . (4)

Thus, the algorithm is a simple filtering algorithmwhich (provided pm
(
yft = ỹft |Datat−1

)
can be evaluated analytically, as it the case in our paper) is computationally fast and
effi cient.
The use of forgetting factors in order to simplify the recursions in state space models

has a long history (see, e.g., Fagin, 1964, and Jazwinsky, 1970) and their properties
are well understood. The contribution of Raftery et al (2010) arose from using a
forgetting factor approach for model averaging/switching. They provide additional
details, including several ways of justifying their approach. One justification of their
approach can be seen by noting that it implies:

πt|t−1,m ∝
t−1∏
i=1

[
pm

(
yfi = ỹfi |Datai−1

)]αi
.

In words, the algorithm allocates more probability to models which have forecast well
(as measured by the predictive likelihood) in the past. The forgetting factor, α, controls
the rate at which past forecasting performance is weighted. If α = 1, then forecasting
performance from all past periods from i = 1, .., t−1 are equally weighted when deciding
on a forecasting model for time t. If α = 0.95, then forecast performance 12 months
ago receives (roughly) half as much weight as last period’s forecasts. In our empirical
work, we consider α = 1 (which allows for very slow model switching), α = 0.99 (slow
model switching), α = 0.95 (moderate model switching) and α = 0.90 (rapid model
switching). The choice α = 1 will be equivalent to Bayesian model averaging (BMA)
done in a recursive manner with an expanding window of data.
The theory outlined in this section holds for any set of models. In Raftery et al

(2010) the different models were TVP regression models. In the present paper, the
different models are VARs. But the same algorithm can be used.
In addition, for the Bayesian a model also involves a prior. Thus, we can augment

our model space by considering different priors. Remember that our Minnesota prior
depends on a shrinkage parameter, λ. We consider five different values for λ and inter-
pret these as five different models. In particular, we let λ = 10−10, 0.001, 0.005, 0.01, 10.
These values vary from an extremely tight prior implying very strong shrinkage towards
a random walk to very noninformative priors imply minimal shrinkage. At each point
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in time, the optimal value of λ is selected using DMS. Thus, our entire model space con-
tains five versions of each of the n-variate VARs and we are estimating the Minnesota
prior shrinkage parameter in a time-varying manner.
In summary, we are using an existing algorithm which allows for model switching.

However, we are using it for a different set of models than has been considered in the
past. Our set of models differ in VAR dimensionality and the degree of shrinkage in
the Minnesota prior. Since the main focus is on VAR dimension selection, we use the
terminology DDS for this approach.

4 Empirical Results

In this section we investigate the ability of our DDSmethodology to forecast US inflation
using up to 10 dependent variables in a VAR. It is divided into three sub-sections which:
i) describe the data, ii) investigate which VAR dimensions and which variables DDS
selects and iii) compare the forecast performance of DDS relative to other VAR-based
methods.

4.1 Data

We use data on 10 commonly-used monthly US macroeconomic variables from 1973M1
through 2012M3. All of the data is obtained from the Federal Reserve Bank of St.
Louis’FRED data base. We follow a common practice (see, e.g., Carriero, Clark and
Marcellino, 2011) and transform our variables so as to be rates. Table 1 lists our vari-
ables and the transformations done. Variables which were available weekly or daily are
averaged to produce monthly figures. Where relevant, variables are seasonally adjusted.
The results below maintain a lag length of 4, but results are relatively insensitive to lag
length. Inflation is the variable common to all VARs (labelled yft in Section 2), with
the remaining variables being potential predictors for inflation (labelled yrt in Section
2).

Table 1: Variables Used in the VARs
Acronym Original Variable Transformation
INF PCE price index log difference
UR Unemployment rate none
CLAIMS Initial unemployment claims none
IP Industrial production log difference
ORDERS ISM manuf. new orders index none
POIL WTI spot oil price log difference
SP500 S&P500 index log difference
ILONG 10-year t-bill rate none
ISHORT Federal funds rate none
EXR Trade-weighted US $ exchange rate log difference

4.2 Which Variables Does DDS Select?

The two main specification choices in DDS are α (which affects the degree of model
switching) and κ (which affects the amount of change in Σt). In the following section,
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a forecasting exercise will be presented which investigates a wide range of values for α
and κ. However, before doing this, we present evidence on what DDS is doing for the
particular choices α = 0.99 and κ = 0.90. The value α = 0.99 is the one suggested
by Raftery et al (2010) and κ = 0.90 is a value which allows for a high degree of
variation in volatility. As we shall see in the next sub-section, allowing for substantive
heteroskedasticity does seem to be important in achieving good forecast performance
in this data set.
Figure 1 shows the size of the VAR which is chosen by DDS at each point in time.

The two main points to note are that DDS is ensuring parsimony and that the VAR
dimension switches substantially over time.
On the issue of parsimony, it can be seen that DDS is never choosing a VAR with

more than six variables and for most of the time, the dimension is three or less. In
fact, for the latter half of the 1970s it is selecting a univariate AR model. Subsequent
to the 1970s, the VAR dimension tended to increase in size until an abrupt switch
in dimension around 1990. For a long period from 1990 through 2008, DDS chose a
three dimensional VAR (occasionally and briefly switching to a two or four dimensional
model). It is only in the recent recessionary period that the VAR dimension has been
increasing.

1975 1980 1985 1990 1995 2000 2005 2010 2015
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
Selected VAR Size at Each Point in Time

Figure 1

Figures 2 and 3 show which variables DDS has been selecting at each point in time.
The numbers in the figures are “inclusion indicators”which equal one in time periods
when DDS is selecting the variable for inclusion in the VAR (and equal zero at other
times). The dominant variable is oil price inflation which, apart from the late 1970s and
a few other brief periods, is selected by DDS. During the period 1990-2008, when DDS
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is choosing parsimonious VARs, it is typically using a trivariate VAR involving INF,
POIL and SP500. After 2000 (and, in particular, after 2008 when the VAR dimension
tends to increase), the exchange rate and unemployment rate also frequently enter as
important variables. It is interesting to note that, in the 1980s (when DDS selects
VARs with higher dimensions) the long and short term interest rates are included,
but subsequently these variables play no role whatsoever. The remaining variables
(ORDERS, CLAIMS, IP) only occasionally enter the VAR. Although it is interesting
to note that each of these variables is selected at some point in time, indicating they
are episodically useful for forecasting inflation.

1960 1980 2000 2020
0

0.5

1
UR

1960 1980 2000 2020
0

0.5

1
CLAIMS

1960 1980 2000 2020
0

0.5

1
IP

1960 1980 2000 2020
0

0.5

1
ORDERS

1960 1980 2000 2020
0

0.5

1
POIL

Figure 2: Inclusion Indicators for Individual Variables
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Figure 3: Inclusion Indicators for Individual Variables

4.3 Forecasting Comparison

The preceding sub-section indicates that the VAR dimension is switching over time
and that, when forecasting inflation, different variables are useful at different points in
time. In the present sub-section, we investigate whether this switching is leading to
substantial improvements in forecast performance. Given that DDS uses the predictive
likelihood which evaluates the one-period ahead forecast performance, we focus on one-
period forecasts in this sub-section.
We compare DDS forecast performance to that of several forecasting strategies a

researcher might use with VARs of fixed dimensions. In particular, we reason that a
researcher might choose one of three strategies: i) use the large VAR (include all 10
variables), ii) motivated by the Phillips curve, use a bivariate VAR for inflation and
unemployment, or iii) use a univariate AR for inflation. In order to make sure our
forecast comparison is as fair as possible, we use the same Minnesota priors and same
strategy for optimizing the shrinkage parameter in the Minnesota prior in the fixed
dimension VARs as we did with DDS. We also allow for heteroskedasticity using the
same EWMA estimator as we did with DDS. Homoskedastic variants of the VARs are
also treated in the same way for both cases.
We use three standard metrics of forecast performance. Mean squared forecast

error (MSFE) and mean absolute forecast error (MAFE) investigate the properties of
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the point forecasts of inflation. Sums of log predictive likelihoods (LPL) can be used to
investigate the forecast performance of the entire predictive density.4 All of these are
evaluated over the period 1977M1 through 2012M3
We begin by investigating the sensitivity of DDS to choice of forgetting and decay

factors. A strong finding of Table 2 is that allowing for changes in volatility is important
in achieving good forecast performance. Imposing homoskedasticity, or even κ = 0.99,
leads to inferior forecast performance relative to values of the decay factor which allow
for greater volatility change. This result comes through with moderate strength in the
MSFEs and MAFEs. However, it comes through with greater strength in the LPLs
which depend not only on the point forecast, but also the predictive variance. This
indicates that appropriate modelling of heteroskedasticity is of particular importance
in correctly estimating the dispersion of the predictive distribution.
If we ignore the poorly performing homoskedastic and κ = 0.99 rows of Table 2, it

can be seen that MSFE and MAFE results are fairly robust to the choice of α. Values
of α allowing for a moderate degree of model switching (i.e. α = 0.95 or 0.99) tend to
perform best, with α = 0.90 performing worst. The combination α = 0.99 and κ = 0.90
leads to the best forecast performance as evaluated by LPL. If we use MSFE or MAFE,
the combination α = 0.95 and κ = 0.95 forecasts slightly better. But, in general, we
are finding a fair degree of robustness provided we avoid the homoskedastic case and
do not allow for too much model switching. Note that, for α = 0.90, forecasts one year
ago only receive about 28% as much weight as last month’s forecast performance in the
model switching choice. Thus, this value is choosing the forecasting model based only
on the very recent past, which is not optimal in the present application.

Table 2: Predictive Performance of DDS
α κ LPL MSFE MAFE
1.00 Homo -490.53 0.611 0.590
1.00 0.99 -468.14 0.564 0.571
1.00 0.95 -428.00 0.565 0.562
1.00 0.90 -408.92 0.566 0.565
0.99 Homo -489.04 0.617 0.590
0.99 0.99 -467.45 0.570 0.567
0.99 0.95 -417.58 0.550 0.553
0.99 0.90 -397.90 0.550 0.556
0.95 Homo -497.09 0.632 0.594
0.95 0.99 -473.81 0.608 0.579
0.95 0.95 -412.18 0.537 0.542
0.95 0.90 -402.66 0.588 0.568
0.90 Homo -499.20 0.634 0.600
0.90 0.99 -483.87 0.642 0.586
0.90 0.95 -424.36 0.585 0.567
0.90 0.90 -409.43 0.597 0.579

4To aid in interpretation, note that sums of log predictive likelihoods over the entire sample will
equal the log marginal likelihood. The log Bayes factor is equivalent to the difference in the log
marginal likelihoods between two models. There are standard rules of thumb for interpreting Bayes
factors (see, e.g., Kass and Raftery, 1995). Also, information criteria such as the Schwarz criterion can
be interpreted as approximations to log marginal likelihoods.
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Table 3 presents forecast metrics for the fixed dimension VARs for different values
for κ. As in Table 2, a strong finding is that allowing for substantial change in volatility
is important for achieving good forecast performance as measured by LPL (results for
MSFE andMAFE are weaker). However, the most important finding is that the forecast
performance of fixed dimension VARs tends to be substantially worse than DDS. For
instance, the MSFEs in Table 3 are rarely much below 0.60. In Table 2, if we ignore the
poorly forecasting homoskedastic results, we tend to find MSFE values of around 0.55-
0.57 (and the lowest MSFE using DDS is 0.537). This represents a 5-10% improvement
in forecast performance which, for inflation, is substantial. Similarly, in Table 3 the
highest LPL is -416.23 which is much lower than the highest LPL of Table 2 which is
-397.90. In general, if we compare like with like (e.g. compare κ = 0.95 rows in the two
tables), you see a deterioration in forecast performance when moving from DDS to the
fixed dimension VAR.
The final row of Table 3 presents MSFE and MAFE for a no change forecast. These,

too, are substantively higher than the ones produced by DDS.
It is also interesting to note that, with fixed dimension VARs, LPLs indicate that the

univariate AR model for inflation is forecasting best. In contrast, MSFEs and MAFEs
show no strong preference for any particular VAR dimension. The fact that DDS is
forecasting better (by any of our forecast metrics) and is selecting parsimonious (but
rarely univariate) VARs indicate the importance of dimension switching and allowing
for different predictors for inflation to enter/leave the VAR over time.

Table 3: Predictive Performance of Fixed Dimension VARs
VAR Dimension κ LPL MSFE MAFE
10 Homo -475.66 0.590 0.579
10 0.99 -473.28 0.586 0.579
10 0.95 -448.46 0.599 0.584
10 0.90 -433.89 0.612 0.592
2 Homo -485.07 0.605 0.584
2 0.99 -476.05 0.599 0.580
2 0.95 -440.97 0.598 0.578
2 0.90 -419.80 0.596 0.578
1 Homo -482.54 0.599 0.576
1 0.99 -471.52 0.587 0.576
1 0.95 -437.15 0.594 0.578
1 0.90 -416.23 0.592 0.577
No change — — 0.724 0.636

These empirical results show the computational feasibility and usefulness of DDS
in a VAR of up to 10 dimensions on a standard personal computer. Extensions to
VARs somewhat larger than this (e.g. 15 or 20 dimensions) could be handled if a faster
computer were used or the researcher was willing to tolerate a greater computation
time. However, in the near future, it is unlikely that DDS as implemented in this paper
could be done using large VARs involving 100 or more variables (such as the one in
Banbura et al, 2010). Even a very fast computer would take many years to evaluate 250

or 2100 VARs. In such a case, we would recommend restricting the model space in some
way. For instance, the researcher might only work with all VARs up to a small fixed
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dimension. Or the researcher may wish to divide variables into blocks (e.g. a financial
block, a monetary block, etc.) and consider only VARs which select one variable from
each block.
In our empirical work, the goal was to investigate the performance of DDS for a

range of forgetting and decay factors. It is worth noting that it is also possible (at
some computational cost) to estimate these factors. The interested reader is referred
to McCormick, Raftery, Madigan and Burd (2012) and Koop and Korobilis (2012).

5 Conclusions

When working with Bayesian VARs, parsimony is often a concern. When forecasting,
the researcher is often concerned with whether the set of variables useful for forecasting
is changing over time. In this paper, we have developed DDS methods which address
both these concerns. DDS can be used to choose VAR dimension and, in addition, allows
the dimension of the VAR to switch over time. The results of an inflation forecasting
exercise suggest that DDS is a potentially useful addition to the Bayesian VAR toolbox.
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