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Abstract

There are many applications across a broad range of business problem domains in which

equity is a concern and many well-known operational research (OR) problems such as knap-

sack, scheduling or assignment problems have been considered from an equity perspective.

This shows that equity is both a technically interesting concept and a substantial practical

concern. In this paper we review the operational research literature on inequity averse

optimisation. We focus on the cases where there is a tradeoff between effi ciency and equity.

We discuss two equity related concerns, namely equitability and balance. Equitabil-

ity concerns are distinguished from balance concerns depending on whether an underlying

anonymity assumption holds. From a modelling point of view, we classify three main

approaches to handle equitability concerns: the first approach is based on a Rawlsian prin-

ciple. The second approach uses an explicit inequality index in the mathematical model.

The third approach uses equitable aggregation functions that can represent the DM’s pref-

erences, which take into account both effi ciency and equity concerns. We also discuss the

two main approaches to handle balance: the first approach is based on imbalance indicators,

which measure deviation from a reference balanced solution. The second approach is based

on scaling the distributions such that balance concerns turn into equitability concerns in

the resulting distributions and then one of the approaches to handle equitability concerns

can be applied.

We briefly describe these approaches and provide a discussion of their advantages and

disadvantages. We discuss future research directions focussing on decision support and

robustness.

1 Introduction

There are various real life applications where equity concerns naturally arise and it is impor-

tant to address these concerns for the proposed solutions to be applicable and acceptable. As a

result, there exist many articles cited in the operational research (OR) literature that consider

classical problems, such as location, scheduling or knapsack problems, and extend available

models so as to accommodate equity concerns. These models are used across a broad range

of applications including but not limited to airflow traffi c management, resource allocation,

workload allocation, disaster relief, emergency service facility location and public service pro-

vision. This broad range of applications indicates that considering these classical models with

an emphasis on equity is practically relevant in addition to being technically interesting.
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In this paper we present a literature review on inequity aversion in operational research

and a classification of the modelling approaches used to incorporate concerns about equity

alongside effi ciency concerns in optimisation problems. The equity concept is often studied in

an allocation setting, where a resource or good is allocated to a set of entities. The concern

for equity involves treating a set of entities in a “fair”manner in the allocation. The allocated

resource or outcome can be a certain good, a bad or be a chance of a good or bad. The

entities can be for example organizations, persons or groups of individuals which are at different

locations or are members of different social classes.

At this point it may be helpful to look at three small examples. Let us start with a simple

example in which we have two people who are allocated some money. Consider the following

two allocations to these people, who are no different in terms of claim: (100,50) and (80,70).

Common sense suggests that the second allocation is more equitable than the first one. The

Pigou-Dalton principle of transfers (PD) formalizes this intuition. The PD states that any

transfer from a poorer person to a richer person, other things remaining the same, should

always lead to a less equitable allocation.

PD allows us to compare allocations that have the same aggregate amount as is the case

in our simple example. However, things get more complicated when we have allocations that

differ in terms of the aggregate amount. In many situations an increase in equity results in a

decrease in effi ciency, which is usually measured by the total amount of the good (bad) that

is allocated. As an example, consider a case where an emergency service facility is going be

located. Suppose that a number of potential sites for the facility is already determined and

the problem is to choose one of them. The facility will be serving different customers and it

is important for the decision maker (DM) to ensure an equitable service to them. The DM

evaluates how good a service is by the distance the customers have to travel to reach the

facility: the shorter the distance between a customer and the facility, the better it is. One

can consider choosing an alternative that minimizes the total distance that all the customers

travel to the facility to evaluate how good each potential site is. However, in such a solution

some of the customers may be significantly under-served. Figure 1 shows a small example

with 3 customers located at the nodes of a network (C1, C2 and C3). Suppose that there are

two alternative locations for the emergency service facility (P1 and P2, respectively). We will

represent the two alternative locations using distance distributions that show the distance that

each customer has to travel. The first location (P1) results in distance distribution (0,5,5) and

the second one (P2) results in distribution (3,4,4). We see that the first alternative is more

effi cient in the sense that the total distance travelled is less. However, this effi ciency is obtained

at the expense of customers C2 and C3 who have to travel 5 units of distance. In the second

alternative, the total distance travelled is larger but the distance travelled by the customers

C2 and C3 is reduced. This is a typical example of the trade-off between effi ciency and equity,

which occurs in many real life situations. The DM’s preferences would determine the better

alternative in such cases: there is no “objective”way to determine which distribution is better,

and reasonable people may take different views. For example the DM may argue that the first

alternative is better claiming that it saves on total distance travelled, or s/he may argue that

the second alternative is better as the maximum distance travelled is smaller. This review will

focus on the cases where both effi ciency and equity are of concern to the decision makers.

The above examples show cases where anonymity holds; that is, the identities of the entities
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Figure 1: Two alternative locations for an emergency service facility

are not important. However, as we will see in the next example, there may be situations where

the entities have different characteristics and hence anonymity may not make sense. Suppose

that you are the head of an academic department and you have to decide on the allocation of

the next year’s studentship budget to the PhD students. Which of the following rules would

you use as a base for your decisions?

-Allocate every student the same amount regardless of any other factor

-Allocate the budget proportional to the students’declared needs, which are measured as

the shortfall from target income (students that need more get more)

Different people would give different answers to this question. The first rule respects person

anonymity and hence is equitable. However, there are other sensible arguments that would

favor other rules, as anonymity may be inappropriate when we have entities with different

characteristics, such as different needs. These two rules involve two different dimensions of

equity, “horizontal”and “vertical” equity. Horizontal equity is concerned with the extent to

which entities within a class are treated similarly (Levinson (2010)); hence giving equal amounts

to the students with the same need would satisfy concerns on horizontal equity. Vertical equity

is concerned with the extent to which members of different classes are treated differently.

Giving different amounts to students with different needs is a decision reflecting a concern for

vertical equity.

As seen in this example, a reasonable equity concept might involve “unlike treatment of

unlikes”, such as giving different amounts to students with different needs. We call this equity

concept that involves entities which are distinguished by an attribute such as need, claim or

preferences balance.

1.1 Review Methodology

The search methodology we use for this review is as follows: We used the “Web of Science”

database for our search and used the keywords “equit*”(so that the words such as “equity”and

“equitable” are included), “fairness” and “equality”. We narrowed down the search by area

(Operational Research/Management science) and we limited the search to “Journal Articles”.

As our focus is on current practice we surveyed the 10 years from 2003 to the time of analysis,

mid way through 2013. For the “equit*”keyword, we have identified 392 articles. Screening

by title, we eliminated the irrelevant ones, most of which use “equity” as a financial term,

and obtained 181 articles. We further screened them by abstract. We focused on the studies
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that either report a modelling approach that incorporates equity concerns alongside effi ciency

concerns or discuss equity measures that have been used in the OR literature. We obtained

69 articles this way. For the “fairness”keyword we obtained 100 papers, which reduced to 34

after screening. As most of the articles found with the keyword “equality” use this term in

its mathematical modelling sense (i.e. equality constraints in a mathematical model) only 4

articles obtained with this keyword were relevant. Scanning the references of these articles we

added 27 articles to our review list.

Note that since our focus is inequity-averse optimisation, we exclude the studies on non-

cooperative games and filter these from the review. The articles on cooperative game theory

concepts are also excluded as these concepts embody a stability rather than fairness rationale

- they are solutions which can be made to “stick” rather than solutions which are attractive

in an ethical sense. Moreover, we consider the approaches to problems where one has to trade

equity off against effi ciency and hence we do not review the solution approaches to the “fair

division problem”. We think there is a scope for another review for such problems. Note

that if one does not have to trade equity off against effi ciency, one does not have to answer

the question “how much fairer is division A than division B?”. It is enough to have ordinal

information. In that sense, trading equity off against effi ciency, brings an additional challenge

to the allocation problems.

In Table 1 we report the journals that contribute to the literature with 3 or more pub-

lications. Around 14% of the articles were published in European Journal of Operational

Research, followed by 10% and 8% in Computers and Operations Research and Operations

Research, respectively. In total there were 43 journals, which shows that equity considerations

arise in various settings and are discussed in publications in a variety of journals with different

audiences and scopes.

Table 1: Number of articles by journal

Journal Frequency
European Journal of Operational Research 19
Computers and Operations Research 13
Operations Research 10
Transportation Science 9
Annals of Operations Research 9
Journal of the Operational Research Society 6
Interfaces 5
Transportation Research Part B 4
Networks 4
Omega 4
Transportation Research Part E 3
Management Science 3
IEEE Systems Journal 3
Expert Systems with Applications 3
Queueing Systems 3

The rest of the paper is as follows: Section 2 discusses the two main equity related terms,

which are equitability and balance. We mention some of the applications involving equity

concerns cited in the OR literature. For such problems, we summarize the motivation for

equity, the outcome distribution used in assessing equity and the entities for which equity is

4



sought. In this section we do not attempt to give technical details on how the equity concerns

are incorporated into mathematical models; we rather want to show that there is a wide range

of applications and that equity is regarded as an important concern in the modelling process.

Section 3 includes a more detailed discussion of different approaches taken in the literature

to incorporate equitability and balance concerns in mathematical models. We conclude the

discussion in section 4, where we point out future research directions that would be interesting

to explore.

2 Equitability and Balance

In this section we discuss two equity related concepts, namely equitability and balance. Eq-

uitability is used for comparing allocations across a set of indistinguishable entities. Balance

concerns occur when we allocate goods over entities with different needs, claims or preferences.

In such situations, ensuring justice might require treating different entities differently. We

discuss these concepts in an order based on the frequency of appearance in our review.

2.1 Equitability Concerns

Around two thirds of the articles in this review deal with equitability concerns. Equitability

concerns occur when the set of entities are indistinguishable and hence anonymity holds. The

first two examples used in the introduction show two important settings in which equitability

can be a concern. The first setting is where a fixed amount of resource is being allocated and

distributions can be quasi-ordered using PD. The second setting is where we have allocations

with different total amounts which are not comparable using PD. This second setting makes

things more interesting and complicated as there is often a tradeoff between effi ciency and

equitability. Hence this review focuses on such settings.

Earlier we gave an example regarding horizontal and vertical equity, which we relate to

equitability and balance concepts, respectively. Alongside horizontal and vertical equity, equity

can be quantified in other dimensions such as spatial equity and temporal equity (Levinson

(2010)). Spatial equity is concerned with the extent to which the good is distributed equally

over space, i.e. over the entities at different locations. Temporal equity, which is also referred

to as longitudinal or generational equity, is the extent to which the good is distributed to

the present or future recipients, i.e. to entities are distinguished by temporal aspects such

as different generations who are the beneficiaries of a road investment or entities that use an

emergency service system at different times.

Let us introduce some notation that will be used throughout the paper. Suppose that we

have an outcome distribution (allocation) y = (y1, y2, ..., ym) where yi is the outcome level of

entity i ∈ I, I being the entity set. Without loss of generality, we assume that the more the
outcome level, the better, i.e. the problem is a maximization problem. Note that it is possible

to define the outcome distribution in multiple ways using different scales. For example, in a

resource allocation problem two possible outcome definitions are the following: one can define

the outcome distribution in terms of the absolute resource amounts allocated to different

entities (yi) or as the shares of the total resource allocated to different entities (yi/
∑
i∈I yi).

An inequality index can be defined for either of the two distributions. The difference stems

from the outcome definition rather than the index itself. In this work we do not distinguish the

5



inequality indices based on how the distributions are scaled (see Marsh and Schilling (1994)

for detailed information and a categorization of the inequality indices used in location theory).

We now provide a list of some of the many applications cited in the literature along with

a discussion of the motivation for equity in such cases. We classify the applications based on

the underlying technical problem.

Allocation Problems: An equitable allocation of the good or resource over multiple
entities is sought in such problems (Luss (2012b)). Applications include bandwidth or channel

allocation (Tomaszewski (2005), Lee et al. (2004), Lee and Cho (2007), Luss (2008), Salles

and Barria (2008), Ogryczak et al. (2008), Luss (2010), Luss (2012a), Jeong et al. (2005),

Chang et al. (2006), Zukerman et al. (2008), Morell et al. (2008), Zhang and Ansari (2010),

Bonald et al. (2006), Heikkinen (2004), Ogryczak et al. (2005), Kunqi et al. (2007)), water

rights allocation (Udías et al. (2012)), health care planning (Earnshaw et al. (2007), Demirci

et al. (2012), Hooker and Williams (2012), Bertsimas et al. (2013)), WIP (Kanban) allocation

in production systems (Ryan and Vorasayan (2005)), fixed cost allocation (Li et al. (2013),

Butler and Williams (2006)), and public resource allocation such as allocating voting machines

to election precincts (Yang et al. (2013)). There are also studies that consider general resource

allocation settings such as Bertsimas et al. (2011), Bertsimas et al. (2012), Hooker (2010),

Nace and Orlin (2007), Medernach and Sanlaville (2012) and Bertsimas et al. (2014).

One classical problem in this group is the discrete knapsack problem. The discrete knapsack

problem selects a set of items such that the total value of the set is maximized subject to

capacity constraints. In some applications equity is a concern as well as effi ciency (total output

maximization). A linear knapsack problem with profit and equity objectives is considered

in Kozanidis (2009). Nace and Orlin (2007) introduce the lexicographically minimum and

maximum load linear programming problems in order to achieve equitable resource allocations.

In resource allocation problems equity may be defined as spatial equity but other definitions

are also possible such as space-time equity across members of the public in terms of the allocated

amount. In water distribution problems, spatial and temporal equity across demand points is

considered. One example of temporal equity concerns is averting high variation in water deficits

in a region over multiple periods to avoid extreme deficits (Udías et al. (2012)).

Bertsimas et al. (2011) discuss different fairness concepts that are used to ensure fair al-

location of resources in an abstract environment. The authors derive bounds for the price of

fairness, which is the loss in effi ciency when a “fair” resource allocation is pursued. Bertsi-

mas et al. (2012) also focus on balancing effi ciency and equity in resource allocation settings.

Bertsimas et al. (2014) propose a modelling framework for general dynamic resource alloca-

tion problems where there is a concern of equitably distributing the delay among the resource

requests.

Another classical OR problem is the assignment problem which involves allocation of work-

load over agents. These problems may involve concerns on fairness among agents. Equity can

be sought in terms of the assigned workload as in Eiselt and Marianov (2008). In air traffi c

management, when a foreseen reduction in a destination airport’s landing capacity is antici-

pated, ground delay programs (GDP) are used as the primary tool for traffi c flow management.

In a GDP, the departure times of the affected flights are coordinated and hence the aircraft

is delayed on ground. Vossen and Ball (2006) and Ball et al. (2009) model the GDP as an

assignment problem and incorporate equity concerns.
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We refer the interested reader to a recent article by Ogryczak et al. (2014) for a comprehen-

sive review of fair optimization models and methods in commuication networks and location

and allocation problems.

Location Problems: One of the main concerns in facility location models is ensuring
an equitable service to the population. Especially in essential public service facility location

models, geographic equity of access to the service facilities is considered as one of the main

requirements for an applicable solution. The access level can be measured in different terms

such as the distance between demand points (customers) and the facilities (as in Batta et al.

(2014), Maliszewski et al. (2012), Smith et al. (2013), Bell et al. (2011), Ohsawa et al. (2008),

Chanta et al. (2011), Jia et al. (2007), Melachrinoudis and Xanthopulos (2003), Ohsawa and

Tamura (2003), Mladenovic et al. (2003), López-de-los Mozos et al. (2013), Lejeune and Prasad

(2013)) or the time required to access the facility from the demand points as in Mestre et al.

(2012) and Smith et al. (2009). Ogryczak (2009) considers the generic location problem from

a multicriteria perspective and formulates a model where each individual access level is mini-

mized.

If the facilities are not essential service facilities, which can serve customers within a limited

distance, the amount of population covered at each facility can be used as an indicator for which

an equitable distribution is sought (Smith et al. (2013)). A related problem is the equitable

load problem, where ensuring an equitable service load distribution over the service facilities

is of concern (Berman et al. (2009), Baron et al. (2007), Suzuki and Drezner (2009), Galvão

et al. (2006)).

Other problems include location-price setting problems, where equitable profit sharing be-

tween competing firms is addressed (Pelegrín-Pelegrín et al. (2011)). Bashiri and Tabrizi (2010)

consider the problem of locating warehouses and try to ensure equity in holding inventory

among all supply chain members, because equity in inventory is argued to have a great impact

on the future throughput of the company through competitiveness issues. Realizing that the

solution which minimizes the total inventory often treats some retailers in an inequitable way,

the authors seek equity across retailers in terms of the amount of inventory.

Vehicle Routing Problems: Vehicle routing problems are used in many applications
such as pick-up and delivery service, disaster relief, hazardous material shipment and reverse

logistics (e.g. waste collection).

One of the outcomes over which equity is sought in vehicle routing problems is vehicle

workload (Jozefowiez et al. (2008)). In an effort to ensure an equitable workload distribution

among vehicles in a multi vehicle pick-up and delivery problem, the expected length of the

longest route is minimized in Beraldi et al. (2010). Similarly, Jang et al. (2006) consider a

routing problem, and propose a model that guarantees that lottery sales representatives travel

roads of similar length on different days. This ensures an equitable distribution of workload

over a time period. Workload balance is also considered in Blakeley et al. (2003) in a periodic

vehicle routing model used to optimize periodic maintenance operations. Ramos and Oliveira

(2011) consider a reverse logistics network problem in which the service areas for multiple

depots are defined. Equitable workload distribution to depots is considered in one of the

objectives of their model. The workload of a depot is measured in terms of the hours needed

to serve the service area it is assigned to.

Equity concerns naturally arise in vehicle routing problems considered in disaster relief
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contexts (Beamon and Balcik (2008)). In such problems, one of the concerns of the decision

makers is ensuring equitable service distribution to different affected areas (nodes). Equity of

service to demand nodes is defined in various ways. For example, if all the demand is satisfied

when a node is visited then the arrival time is used to measure service (Campbell et al. (2008)).

Perugia et al. (2011) develop a multiobjective location-routing model, to model a home-

to-work bus service, and try to achieve an equitable extra time distribution across customers.

Extra time is defined as the difference between the bus transport time and the time of a direct

trip from home to work.

Scheduling: In personnel scheduling, equitable systems attempt to distribute the workload
fairly and evenly among employees (Ernst et al. (2004)). One of the popular problems in

scheduling where equity plays a crucial role arises in healthcare organisations where nurses’

or physicians’schedules are constructed (Azaiez and Al Sharif (2005), Stolletz and Brunner

(2012), Tsai and Li (2009), Martin et al. (2013)). In such settings providing an equitable

distribution of workload across the nurses or physicians is important. The workload can be

quantified in different terms such as the number of days on and off or in terms of the ratio of

the nights shifts to day shifts.

In a class-faculty assignment problem, Al-Yakoob and Sherali (2006) seek equity in terms

of the satisfaction (dissatisfaction) levels of the faculty members that have identical teaching

loads. The dissatisfaction of a faculty member is measured by a function of the classes and

time slots that the faculty member is assigned.

Fairness across patients is one of the factors considered while designing appointment sys-

tems (Cayirli and Veral (2003)). For appointment scheduling for clinical services Turkcan et al.

(2011) introduce a model which includes equity related constraints in order to find uniform

schedules for the patients assigned to different slots. The proposed unfairness measures are

based on the expected waiting times at each slot and the number of patients in the system at

the beginning of each slot.

Erdogan et al. (2010) propose bicriteria models to schedule ambulance crews, the two

criteria being the aggregate expected coverage and the minimum expected coverage over every

hour. The second criterion is included to incorporate temporal equity concerns into the model.

Sports scheduling is another problem where equity among competing teams is considered

crucial (van ’t Hof et al. (2010), Briskorn and Drexl (2009)). One of the rules that is used to

establish a certain degree of fairness in tournaments is ensuring that no team plays against

the teams of the same strength group for a predetermined number of consecutive periods.

The schedules that respect this rule are called group-balanced schedules (Briskorn and Drexl

(2009)).

Other examples include Kimbrel et al. (2006), Angel et al. (2008), and Dugardin et al.

(2010). Kimbrel et al. (2006) deal with the problem of scheduling a multiprocessor, where

fairness across (persistent) jobs in terms of the execution times is considered. Angel et al.

(2008) consider equity in terms of the completion times of jobs in a setting where a set of n

jobs are to be processed by m identical machines. They also consider the case where there

is a concern of distributing the load, in terms of the processing (completion) time among the

machines. Dugardin et al. (2010) consider reentrant hybrid flow shop scheduling problem,

which allows the products to visit certain machines more than once. In this paper, the equity

concept is used with a different underlying motive. The authors propose a bi-criteria model
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and use equity in order to generate solutions which are good enough in both criteria. That is,

solutions that perform very well in one criterion while performing very badly in the other are

avoided. This idea is explained in Section 3.

Transportation Network and Supply Chain Design Problems: In transportation
network design, equity over network users is considered (as in Lo and Szeto (2009), Szeto and

Lo (2006), Miyagawa (2009), Jahn et al. (2005)).

Equity over users is considered while designing access control policies, in which meters are

installed at on-ramps to control entry traffi c flow rates. Different equity concepts are reported

such as temporal equity and spatial equity: “The temporal equity measures the difference

of travel time, delay and speed among users who travel on the same route but arrive at the

ramp at different times while the spatial equity concerns the difference among users arriving

at difference ramps at the same time”(Zhang and Shen (2010)).

Equitable approaches are also used in congestion pricing schemes to ensure “fair”treatment

of the travelers that are categorized for example by income or geographic locations (Wu et al.

(2012), Levinson (2010)). Wu et al. (2012) consider a pricing scheme more equitable if it leads

to a more uniform distribution of wealth across different groups of population.

Equitable capacity utilizations among the participating warehouses and manufacturers is

considered in collaborative supply chain design (Chan et al. (2004)).

Other Integer/Linear Programming Problems, Combinatorial Optimisation Prob-
lems and Stochastic Models: In an effort to ensure equity over voters, in political districting
problems the districts are desired to have approximately the same number of voters (referred

to as “population equality”) (Bozkaya et al. (2003)). Bergey et al. (2003) study an Electri-

cal Power Districting Problem, which deals with partitioning a physical grid into companies

and incorporate equitable partitioning concerns across companies in terms of their earning

potential.

Ogryczak and Śliwiński (2003), Ogryczak (2007), Mut and Wiecek (2011), Kostreva et al.

(2004), Baatar and Wiecek (2006), approach equity from a multicriteria perspective and hence

formulate multicriteria decision making models.

Craveirinha et al. (2008) consider a multi objective routing optimisation model in the

context of MPLS (multiprotocol label switching) networks and consider equity in terms of the

blocking probability of different services.

Markov decision process (MDP) models can also be considered with additional equity

concerns. Mclay and Mayorga (2013) develop a linear programming (LP) model with side

constraints on equity to model the dispatch of emergency medical servers to patients in an

MDP framework. Different equity constraints are used to ensure both service and resource

allocation equity over patients and workload and job satisfaction equity over servers.

In queuing systems one of the main concerns that have been recently discussed in the

related literature is ensuring equity among the customers of the queuing system. Avi-Itzhak

et al. (2008) define the fairness of the queue as “the fairness that can be related to the discipline

or configuration of the queue when all customers are equally needy”, that is the customers

are identical in all respects except their arrival time and service requirements. One of the

most popular queue disciplines First In, First Out (FIFO) takes arrival time (seniority) as

its base when deciding who will be served next (the customer with the earliest arrival time

is assigned to the server), while some other disciplines can be used that are centered on the
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service requirement factor (the customer with the shortest service requirement is assigned to the

server) or on both of the seniority and service requirement factors. The authors discuss three

measures that are used to quantify equity in queues in their paper. As the arrival time and/or

the service requirement level of a customer are used as a basis for claim in the server allocation

we discuss these measures in the balance section. Bonald et al. (2006) model a communication

network problem, where the network is represented as a network of processor-sharing queues

and analyze different fairness schemes.

There are also studies which mainly focus on equity over servers or (heterogeneous) server

pools in queuing systems. One line of research on such systems deals with presenting and

analyzing blind routing policies, i.e. policies of routing the customers to the server pools which

require, at the time of decision, none or minimal information on the parameters of the system

or the system state (based on Atar et al. (2011), Mandelbaum et al. (2012)). Mandelbaum

et al. (2012) propose such a blind policy that routes customers from emergency departments to

hospital wards, which are modeled as heterogeneous server pools in a queuing system, where

the servers are the beds. They consider equity over the ward staff in terms of two criteria:

the first is the idleness ratios, the proportion of the idle servers in the server pools and the

second is based on the flux ratios, i.e. the number of customers served by a server per time

unit. Ward and Armony (2013) discuss a blind fair routing policy in large-scale service systems

with customers and servers which are both heterogeneous. Equity is considered in terms of the

server pool workloads, quantified using the their share of the server idleness (number of idle

servers at each pool).

2.2 Balance Concerns

About one third of the articles in our review deal with balance concerns. Balance is a special

type of equity concern in which the entities are not necessarily treated anonymously since

they differ in some equity-relevant characteristics such as needs, claims or preferences. Such

problems do not have anonymity and an ideal solution may not give each entity the same

proportion of the total allocation. See Kubiak (2009) (pages 5-6) for a discussion of applications

in which proportional representation (in terms of resource allocation) according to these equity-

relevant characteristics is one of the main concerns. Examples provided include ensuring

that equal priority jobs with different lengths (or rights to resources) progress at the rates

propotional to their lengths, or allocating bandwidths or processors according to the reciprocal

of the packet size (the demand) of a customer in a network. “Evenly spread progress of tasks

in time is necessary in such systems where the progress is proportional to the demand for

the tasks’s outcomes”(Kubiak (2009)). The author discusess such proportional representation

problems from the optimization point of view also building upon the apportionment theory.

Heterogeneity of Needs (or size)
The social equity concept quantifies equity based on the extent to which any good received

is proportional to the need (Levinson (2010)).

As an example, Johnson et al. (2010) considers equity related concerns in a public policy

problem faced by a municipality which has to select a portfolio of foreclosed homes to purchase

to stabilize vulnerable neighborhoods. A spatial equity based objective is incorporated into the

corresponding knapsack model, which minimizes the maximum disparity between the fraction

of all purchased homes in a neighborhood and the number of available foreclosed houses in
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that neighborhood across all neighborhoods. In this example, the need of a neighborhood is

quantified by the number of available foreclosed houses in that neighborhood.

In disaster relief settings the demand points have different needs. If partial satisfaction

of demand is possible, the proportion of demand satisfied is used as a measure of service.

Such measures are used by Davis et al. (2013) in an inventory management model and by

Vitoriano et al. (2011) and Tzeng et al. (2007) in multi-objective transportation/distribution

models. Davis et al. (2013) propose a stochastic programming model for placing commodities

and distributing supplies in a humanitarian logistics network. There are studies that use more

complicated service functions combining timing and proportion of demand satisfied (see e.g.

Huang et al. (2012), which consider vehicle routing and supply allocation decisions in disaster

relief). Similarly Swaminathan (2003) and Swaminathan et al. (2004) consider a drug allocation

setting and provide each clinic with a fraction of drug supply which is proportional to their

demand. Higgins and Postma (2004) propose an integer programming model to optimize siding

rosters and ensure that growers with different amounts of cane maintain approximately the

same percentage of cane harvested throughout the harvest season. Geng et al. (2014) consider

a sequential resource allocation setting where each customer’s utility is modelled as the ratio

of the allocated amount to the demand.

In locating undesirable facilities such as waste disposal facilities, geographic equity in the

distribution of nuisance effects or social rejection is one of the concerns that is incorporated

into the models (Boffey et al. (2008), Caballero et al. (2007)). In such problems the towns have

different nuisance parameters since they have different sizes. A tenant-based subsidized housing

problem is considered in Johnson (2003), where subsidy recipients are allocated to regions and

equity across the potential host communities, which differ in size, has to be considered.

Heterogeneity of Claims
In some settings the entities are distinguishable based on their claims for a resource. The

claims may be as a result of a previous legal agreement or on agreed upon rules. For example,

in GDPs spreading delay or delay-related costs equitably among multiple airlines (flights or

flight types) is one of the main concerns while assigning landing slots to airlines. In such

settings the schedule which is generated before the disruptions is taken as a reference solution

and hence may provide airlines with a basis to construct claims regarding the new schedule.

For example a flight which was supposed to land first in the previous schedule would find it

unfair if assigned as the last one in the new schedule.

Sherali et al. (2003), Sherali et al. (2006) develop an airspace planning and collaborative

decision making model, which is a mixed integer programming model. The model is devel-

oped for a set of flights and selects a flight plan for each flight from a set of proposed plans.

Each alternative plan consists of departure and arrival times, altitudes and trajectories for the

flight. The suggested model addresses the equity issues among airline carriers in absorbing the

costs due to rerouting, delays, and cancellations. Sherali et al. (2011) extend this model by

integrating slot exchange mechanisms that allow airlines to exchange the assigned slots under

a GDP. Lulli and Odoni (2007) propose an air traffi c flow management model that assigns

ground and air-borne delays to flights subject to both en route sector and airport constraints.

The model is described as a macroscopic version of a previous model by Bertsimas and Stock

Patterson (1998), with a different objective function, which is argued to “spread” the delay

in an equitable way across affected flights. Similarly, Barnhart et al. (2012) propose integer
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programming models that are based on the models discussed in Bertsimas and Stock Patterson

(1998) and Giovanni et al. (2000). The models assign ground holding delays to flights in a mul-

tiresource traffi c flow environment that also take equity in delay distribution into account. By

considering the en route sector capacity constraints, these models differ from the GDP models

that only consider arrival airport capacity. Balakrishnan and Chandran (2010) consider the

runway scheduling problem in airport transportation, which finds a schedule and corresponding

arrival and departure times for aircraft. Equity among aircraft is ensured by the constraint po-

sition shifting approach. This approach requires that there is no significant deviation between

positions of the aircraft in the optimized sequence and the first-come-first-served sequence. A

similar approach is used in Smith et al. (2011). Ball et al. (2010) use a stochastic programming

model that assigns ground delays to flights under uncertainty. The model minimizes expected

delay and incorporates balance concerns among flights using a balance-related constraint.

Another application is scheduling commercials in broadcast television. Bollapragada and

Garbiras (2004) propose a mathematical model for this problem, in which balance concerns over

clients are also considered. Similarly, Karsu and Morton (2014) propose a bicriteria modelling

framework that considers both effi ciency and balance concerns in resource allocation problems.

Heterogeneity of Preferences
In some problems entities have different preferences which make them distinguishable from

each other. For example, Espejo et al. (2009) consider (as they call it) the minimum-envy

location problem, where the customers have ordinal preference orderings for the candidate

sites. The problem is opening a certain number of facilities to which the customers will be

assigned. Each customer is assigned to his most preferred facility among those which are open

and the envy between a pair of customers is measured as the difference between the ranks of

the facilities.

Diversity Concerns
Another concept which is related to equity but in an indirect or orthogonal way is diversity.

Around 4 percent of the reviewed papers use the diversity concept. To see the motivation for

this concept, suppose that you are going to select a set of candidates for a degree programme.

You have concerns on diversity in the sense that you want certain population groups to have

a certain degree of representation in the selected set. These groups may, for example, consist

of people with a lower socioeconomic background. A common way of achieving this is to use

quotas or proportion targets, i.e. ensuring that a certain proportion of the selected people will

be from the specific group of concern. This approach involves treating people with different

characteristics differently such that the selected team is diversified enough. For example,

Bertsimas et al. (2013) ensure that the percentage distribution of (kidney) transplant recipients

across different population groups are above specified lower bounds. Similarly, in an applicant

selection model Duran and Wolf-Yadlin (2011) ensure diversity in the selected team in order

to represent certain population groups.

Aringhieri (2009) considers the problem of forming teams of service personnel with different

skills. To treat customers served by different teams equitably, the author introduces a diversity

measure and ensures that the diversity is above a threshold for all the teams. To take another

example of diversity, in hazardous material shipment, spreading risk over population groups in

an equitable way is one of the main concerns (Dell’Olmo et al. (2005), Carotenuto et al. (2007),

Caramia et al. (2010)). In some studies the concept of equity of risk is handled by determining
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spatially dissimilar paths. These studies incorporate equity concerns by selecting a set of paths

to carry the hazardous material, which are as dissimilar as possible. Two examples are due to

Dell’Olmo et al. (2005) and Caramia et al. (2010), who consider the problem of selecting of

k routes in multiobjective hazardous material route planning. They use a measure of spatial

dissimilarity and obtain an equitable distribution of risk over the related region by choosing

spatially dissimilar paths to ship the hazardous material.

We do not devote a separate section to diversity and discuss it in this section under bal-

ance concerns. That is because although these studies address equity in a relatively indirect

way, which is based on creating diversity, it is possible to conceptualize diversity as a bal-

ance concern in such settings. For example when selecting candidates for a degree program,

the underlying problem can be considered as allocating admission to the degree program to

population subgroups. Although there is no way in which degree admission can be allocated

equally across people - out of M people, only m can be accepted onto the programme, and

the remaining M −m will have to be rejected- admission can be allocated in a balanced way

across the population subgroups by ensuring that the set of admitted candidates is diverse.

Similarly, when selecting routes in hazardous material shipment settings, the membership of

the selected route(s), i.e. being a node on the route, is allocated to different population cen-

tres. Diversity ensures an equitable allocation of membership over different nodes avoiding

inequitable solutions such as a solution in which most of the routes pass through the same set

of nodes exposing these nodes to much higher risk than the rest.

3 Different Approaches to Handle Equity Concerns

3.1 Different Approaches to Incorporate Equitability

Equity has been widely discussed in the economics literature where it is generally accepted that

there is no one-size-fits-all solution and that special methods are required to handle equity

concerns in particular cases (see e.g. Sen (1973), and Young (1994), who discusses different

concepts of equity). Nevertheless, using transparent and explicit rules that determine what is

equitable and what is not or how equitable a given distribution is on a cardinal or sometimes

ordinal scale can be useful in ensuring that the decisions are applicable and acceptable.

Similarly, in operational research there are many different ways of incorporating equitability

in the decision process since its precise interpretation depends on both the structure of the

problem at hand and the decision maker’s understanding of a “fair” distribution. In this

section, we discuss the operational research approaches that incorporate equitability concerns

in mathematical models alongside other concerns (mostly effi ciency).

One of the most common and simplest ways to incorporate equitability concerns is focusing

on the min (max) level of outcomes across persons. This approach is called the Rawlsian

principle (Rawls (1971)). The Rawlsian principle is justified using a veil of ignorance concept,

which assumes that the entities do not know what their positions (the worst-off, the second

worst-off etc.) will be in the distribution. To illustrate, suppose that you are given two

distributions over two people generically named A and B, such as (5,50) and (30,25). You

have to choose one of the allocations and then will learn whether you are A or B. You would

seriously consider choosing (30,25) as you might be the worse-off person in a distribution and

would get only 5 units if you choose (5,50). This ignorance is a reason to consider the worst-off

13



entities in the distribution as any entity should find the distribution acceptable after learning

its position. This approach, however, fails to capture the difference between distributions that

give the same amount to the worst-off entity: two distributions such as (1,1,9) and (1,5,5)

are indistinguishable in terms of inequity from a Rawlsian point of view although the latter is

significantly more equitable from a common sense point of view. This drawback can be avoided

by using a lexicographic extension, which will be discussed later in detail.

A more sophisticated approach to incorporate equitability concerns would be using sum-

mary inequality measures in the model. We call such approaches inequality index based ap-

proaches. These approaches can be further categorized based on whether the index is employed

in a constraint while defining the feasible region or is used as one of the criteria in the objective

function.

A more general, and hence more complicated, approach would be to use a (inequity-averse)

aggregation function and to maximize it. We refer to such approaches as aggregation function

based approaches. Some studies optimize a specific function of the distribution and obtain a

single equitable solution while others use a multi-criteria approach and obtain a set of equitable

solutions.

The above classification is summarized in Table 3. We will discuss these approaches further

in the following sections.
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3.1.1 The Rawlsian approach (mini yi)

These methods represent equity preference by focusing on the worst-off entity, hence the min-

imum outcome level in a distribution (Rawls (1971)). Some studies try to maximize the

minimum outcome while others restrict it in a constraint that makes sure that it is above

a predefined value. The studies encountered that use a Rawlsian approach to equitability

are Ohsawa and Tamura (2003), Melachrinoudis and Xanthopulos (2003), Mladenovic et al.

(2003), Baron et al. (2007), Davis et al. (2013), Campbell et al. (2008), Maliszewski et al.

(2012), Pelegrín-Pelegrín et al. (2011), Boffey et al. (2008), Bell et al. (2011), Berman et al.

(2009), Mestre et al. (2012), Johnson (2003), Caballero et al. (2007), Baron et al. (2007), Jia

et al. (2007), Tzeng et al. (2007), Perugia et al. (2011), Miyagawa (2009), Ryan and Vorasayan

(2005), Demirci et al. (2012), Udías et al. (2012), Johnson et al. (2010), Bashiri and Tabrizi

(2010), Beraldi et al. (2010), Prokopyev et al. (2009), Earnshaw et al. (2007), Erdogan et al.

(2010), Chanta et al. (2011), Bertsimas et al. (2011), Yang et al. (2013), Mclay and Mayorga

(2013), Li et al. (2013), Batta et al. (2014), Geng et al. (2014), Martin et al. (2013), Zhang

and Ansari (2010), Craveirinha et al. (2008), Heikkinen (2004), Bertsimas et al. (2014), Angel

et al. (2008), López-de-los Mozos et al. (2013), Butler and Williams (2006). Clearly, this is an

easy to implement and popular approach.

The Rawlsian approach is the one of the oldest approaches in OR used to incorporate a

fairness concept into the models. Many classical OR problems such as assignment, scheduling

and location have also been studied with “bottleneck” objectives. For example, the facility

location problems that locate p facilities such that the maximum distance between any demand

point and its nearest facility is minimized are known as p-center problems. These models assign

each demand point to its nearest facility, hence full coverage of customers is always ensured.

p-center location problems are widely considered in location theory, especially in public sector

applications (Zanjirani Farahani and Hekmatfar (2009)).

The Rawlsian approach can be extended to a lexicographic approach, which in addition

to the worst outcome maximizes the second worst (provided that the worst outcome is as

large as possible), third worst (provided that the first and second worst outcomes are as

large as possible) and so on (Kostreva et al. (2004)). Lexicographic maximin approach is a

regularization of the Rawlsian maximin approach such that it satisfies strict monotonicity and

PD. Lexicographic approaches are used in Vossen and Ball (2006), Luss (2010), Luss (2008),

Nace and Orlin (2007), Nace et al. (2008), Luss (2012a), Salles and Barria (2008), Wang

et al. (2007), Wang et al. (2008), Lee and Cho (2007), Lee et al. (2004), Tomaszewski (2005)

, Ogryczak et al. (2005), Hooker (2010), Bonald et al. (2006) and Medernach and Sanlaville

(2012). Lexicographic approaches are very inequality averse and considered by some studies

as the “most equitable”solution.

3.1.2 Inequality index based approaches

In many studies equitability concerns are incorporated into the model through the use of

inequality indices I(y) : Rm → R, which assign a scalar value to any given distribution showing
the degree of inequality. Many inequality measures are studied in the economics literature (see

Sen (1973)). Some of them are also used in the operational research literature when dealing with

problems that involve equity concerns alongside effi ciency concerns. As inequality indices are
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used to assess the disparity in a distribution, they are related to several mathematical concepts

of dispersion and variance. They respect the anonymity property (Chakravarty (1999)) and

have a value of 0 when perfect equity occurs. They assign a scalar value to the distribution

(Chakravarty (1999)) and are “complete” in the sense that every pair of distributions can be

compared under these measures (Sen (1973)).

The indices are used to address equitability concerns and do not incorporate any concerns

on effi ciency. Hence the models that use an inequality index to handle equity concerns are

either designed as multicriteria models (two of the criteria usually being effi ciency and equity

related, respectively) or as single objective models that maximize an effi ciency metric and use

the index in a constraint. For example, Ogryczak (2009) works on location problems and

develops bicriteria mean/equity models as simplified approaches. These models deal with the

equity concern by adapting the inequality measures to the location framework and trying to

minimize them. He discusses different ways to find effi cient solutions to these bicriteria models.

Other bi(multi)-criteria examples include Boffey et al. (2008), Kozanidis (2009), Turkcan et al.

(2011), Ramos and Oliveira (2011), Jang et al. (2006), Galvão et al. (2006), Chan et al. (2004),

Blakeley et al. (2003), Wu et al. (2012), Ohsawa et al. (2008) Al-Yakoob and Sherali (2006),

Stolletz and Brunner (2012), Tsai and Li (2009), Martin et al. (2013), Bertsimas et al. (2014),

Lejeune and Prasad (2013), Bergey et al. (2003). There are also single objective models where

equity is handled via constraints and an effi ciency metric is maximized (Chang et al. (2006),

Mclay and Mayorga (2013)). For example, in Mclay and Mayorga (2013) minimum levels of

allocation are set for each entity using constraints.

Using an explicit inequality measure has some advantages such as bringing transparency to

the decision making process, making the equitability concept computationally tractable, and

hence making it possible to optimize the system with respect to these equality measures once a

suitable measure is agreed upon, or to tradeoff equity and effi ciency (see e.g. Zukerman et al.

(2008)). On the other hand, using an inequality index to incorporate equitability concerns

implies a certain approach to fairness dictated by the axioms underlying the selected index

and sometimes may result in oversimplification of the discussion on equity. Moreover, different

indices are based on different concepts of equity, hence may provide different rankings for the

same set of alternatives. Selecting an index in line with the DM’s understanding of fairness

requires some extra knowledge of the underlying theoretical properties of different indices.

Recall that the widely-accepted Pigou-Dalton principle of transfers (PD) states that any

transfer from a poorer person to a richer person, other things remaining the same, should

always increase the inequality index value. That is, for any inequality index I(y) : Rm → R
satisfying PD the following holds: yj > yi ⇒ I(y) < I(y + εej − εei), for all y ∈ Rm,where
ε > 0, where ei, ej are the ith and jth unit vectors in Rm. A weak version of this principle

requires such a transfer not to decrease the inequality index value. This weak version can be

considered as the minimal property to be expected from an inequality index. All the indices

discussed below satisfy the weak PD. We will indicate the indices that additionally satisfy (the

strong version of) PD.

We now discuss the most commonly used inequality indices. All the indices except the last

one are familiar from the economics literature.

1) The range between the minimum and maximum levels of outcomes (maxi yi − mini

yi): This is the difference between the maximum and minimum outcomes in a distribution.
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This index is used in Boffey et al. (2008), Kozanidis (2009), Turkcan et al. (2011), Mclay and

Mayorga (2013), Stolletz and Brunner (2012), Martin et al. (2013) and Kimbrel et al. (2006).

Ramos and Oliveira (2011) minimize the function (maxi yi−miniyiminiyi
) ∗ 100, hence use a range

function normalized by the minimum outcome. A related measure, (miniyimaxi yi
), is used in Chang

et al. (2006), which is restricted to be larger than or equal to a predefined parameter in a

constraint (the constraint is of the form: miniyi ≥ η ∗maxi yi, where η is called the fairness

parameter.

In this method the equity level of an allocation is assessed by considering the two extremes;

hence this index fails to distinguish allocations that have same level of extremes but different

levels of the other values. In that sense, this index is rather crude but is used in many

applications owing to its being simple and easy to understand.

2) (Relative) Mean Deviation: This is the deviation from the mean. Note that in many

cases the mean of the distribution is not known beforehand and is derived endogenously in the

model. It is possible to use the total absolute deviations from the mean (
∑
i∈I |yi − y|, where

y =

∑
i∈I yi
m |) ( Ogryczak (2009), Eiselt and Marianov (2008), Martin et al. (2013), Bergey

et al. (2003), Bertsimas et al. (2014), López-de-los Mozos et al. (2013)) or to use the positive

or negative deviations only, as in Ogryczak (2009). The mean deviation does not satisfy strong

PD because it is not affected by transfers between two entities which are both above the mean

or both below it.

Jang et al. (2006) use the mean square deviation (
∑
i∈I(yi − y)2). Galvão et al. (2006)

use the maximum componentwise deviation from average as a measure of inequity (Maxi∈I

|yi − y|).
3) Variance (

∑
i∈I(yi− y)2/m): Turkcan et al. (2011), and Tsai and Li (2009) use variance

as a measure of fairness in their models. Variance satisfies PD. Equivalently, the standard

deviation is also used in some studies (Chan et al. (2004), Blakeley et al. (2003)).

4) Gini Coeffi cient : One of the widely used income inequality measure used by the econo-

mists is the Gini coeffi cient owing to its respecting the PD (Ray (1998)). The Gini coeffi cient

has the following formula:
∑

i∈I
∑

j∈J |yi−yj |
2m
∑

i∈I yi
, where I and J denote the entity set. Two ex-

amples are (Lejeune and Prasad (2013)) and Wu et al. (2012), who use the Gini coeffi cient

in location of (service) facilities and in design of more equitable congestion pricing schemes,

respectively.

5) Sum of pairwise (absolute) differences (
∑
i∈I

∑
j∈J |yi−yj |): Sum of absolute differences

between all pairs is considered in Ohsawa et al. (2008), Al-Yakoob and Sherali (2006) and

Lejeune and Prasad (2013). Like the Gini coeffi cient and variance, this measure satisfies the

PD. A closely related measure is the sum of square deviations between all pairs which is used

in Szeto and Lo (2006).

The measures discussed so far are also discussed in the economics literature especially

for assessing income inequality. The first two measures (range and relative mean deviation)

are relatively crude measures and hence not as popular as the others for assessing income

inequality. However, they are used in OR models arguably because these indices have simpler

formulations than the others and so lead to more tractable optimisation problems.

Another example that minimize deviation from a point of perfect equality is due to Bozkaya

et al. (2003). In a political districting problem, Bozkaya et al. (2003) define an acceptable

range around the average district population. In their mathematical model, they minimize the
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deviations from the average for the districts with populations outside this range. The squared

deviation functions are also used (Suzuki and Drezner (2009)).

Minimizing deviation from a predefined target, which, if satisfied, leads to the most equi-

table allocation, is also proposed, especially in goal programming applications. Azaiez and Al

Sharif (2005) consider the deviation between the sum of actual days a nurse works from the

minimum required days on in a nurse scheduling problem. They minimize the total positive

deviations with the aim of obtaining an equitable workload distribution. The same approach

is used to obtain an equitable distribution of day-shifts and night shifts over all nurses. Jahn

et al. (2005) propose a mathematical model for a route guidance system where equity over

network users is ensured by using constraints that avoid lengthy detours. Specifically, the

ratio of length of any user’s path to the “normal length” of the shortest path for the same

origin-destination pair is restricted by a parameter and only the paths leading to ratios lower

than this bound are allowed. They discuss three different choices for the normal length, which

are the geographic distance, free flow travel times (travel times in an uncongested network)

and travel times when the network is in user equilibrium and suggest using the latter.

A specific application of minimizing deviation from a predefined target is minimizing max-

imum regret in an uncertain environment, where the target is the best possible output that

could be obtained in a realized scenario. López-de-los Mozos et al. (2013) consider a single

facility location problem on a network where the node weights (demands) change through time

(let [t−, t+] be the considered time interval). The dynamic nature of demands introduces a

second dimension to the equity concerns since using a static measure (minimizing an inequality

measure using demand data for a fixed time t) may not avoid inequity in some other time t with

different demand figures. The authors discuss two robustness criteria for the mean absolute

deviation problem: In the first one, they minimize the maximum mean absolute deviation

value over the time period (min
x∈N

max
t∈[t−,t+]

F (x, t), where F (x, t) is the mean absolute deviation

function for a location candidate x ∈ N and time t) and in the second one they minimize the

maximum regret over the time period (min
x∈N

max
t∈[t−,t+]

[F (x, t)−F ∗(t), where F ∗(t) = min
x∈N

F (x, t),

the best value that could be reached at time t)

As discussed above, there are many different inequality indices and selecting one implies

certain assumptions on the decision maker’s attitude to equity. For example, in a resource

allocation environment, if the range is used then the focus is on the most and least deprived

parties.

3.1.3 Inequity-averse aggregation function based approaches

One natural way to achieve an equity-effi ciency trade-off without specifying an inequity index

is to use an aggregation function of the distribution vector in the model that would encourage

equitable distributions. An example would be a symmetric function under which a convex

combination of two distributions which have the same functional value would achieve a higher

value than these distributions (e.g. if the function is symmetric (40,50) has a higher value than

(30,60) or (60,30)). Such a function is inequity averse in the sense that the averaging operation

improves the distribution. By maximizing such aggregation (value) functions, we can avoid

distributions that give some entities too much while depriving some others.

We call these approaches aggregation function based approaches. Unlike an inequality index
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which only focuses on the inequity in a distribution, an inequity-averse aggregation function

reflects concerns for both equity and effi ciency. There are several approaches to how the equity

should be captured. There are studies that use value functions which are Schur-concave,

(symmetric) quasi-concave or concave with the aim of obtaining equitable solutions. Note that

when allocating a bad, a Schur-convex, quasi-convex or convex aggregation (cost) function is

minimized.

In these approaches, one uses an aggregation function U : Rm → R, and modifies the
original problem as follows: max{U(y) : y ∈ Y } where Y ∈ Rm is the feasible outcome space.

For a specified function form to be inequity-averse, it has to satisfy some properties. First

of all, such a function should be symmetric to respect anonymity and should reflect concerns

in terms of inequity-aversion and the equity-effi ciency trade-off. We call the set of symmetric

functions that satisfy the strict Pigou-Dalton principle of transfers and strict monotonicity

equitable aggregation functions.

Definition 1 An equitable aggregation function is a function U : Rm → R for which the

following hold:

y1 < y2 then U(y1) < U(y2), for all y1, y2 ∈ Y , i.e. U is strictly increasing with respect to

every coordinate.

U(y) = U(Πl(y)), where Πl(y) is an arbitrary permutation of the y vector, i.e. U is

symmetric.

yj > yi ⇒ U(y) < U(y− εej + εei), for all y ∈ Rm, where 0 < ε < yj − yi, where ei, ej are
the ith and jth unit vectors in Rm, i.e. U satisfies PD.

All equitable aggregation functions are strictly Schur-concave (Kostreva et al. (2004)). Sim-

ilarly, in a minimization environment, for example in cost distribution, equitable aggregations

are Schur-convex functions. We now give the definition of Schur-concave functions. Let us first

give the definition of a bistochastic matrix.

Definition 2 A bistochastic (doubly stochastic) matrix (Q) is a square matrix which has all

nonnegative entries and each row and column of the matrix adds up to 1.

Permutation matrices, which reorder the elements of a vector, are special cases of bisto-

chastic matrices.

The well-known Birkhoff—von Neumann theorem (Birkhoff (1946)) states that the set of

doubly stochastic matrices of order m is the convex hull of the set of permutation matrices of

the same order. Moreover, the vertices of this polytope are the permutation matrices. That is,

a bistochastic matrix of order m is a convex combination of the set of permutation matrices of

the same order.

Definition 3 A function f is strictly Schur-concave (Schur-convex) if and only if for all bis-
tochastic matrices Q that are not permutation matrices, f(Qx) > f(x) (f(Qx) < f(x)).

Schur-concave functions are symmetric by definition. Schur-concavity relates to more fa-

miliar concavity concepts in the following way: All symmetric (strictly) quasi-concave and

symmetric (strictly) concave functions are (strictly) Schur-concave.

Maximizing (minimizing) a specific (strictly) Schur-concave (convex) function that aggre-

gates the outcomes is discussed in a number of papers in the literature. Ball et al. (2009)
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investigate a class of models for assigning flights to slots in ground delay problems and discuss

the use of Schur-convex aggregation functions as a way of obtaining equitable solutions within

this setting.

Marín et al. (2010) use “ordered median functions” as objective functions of discrete lo-

cation problems. Ordered median functions are weighted total cost functions, in which the

weights are rank-dependent. As the weights are rank dependent, these functions are symmet-

ric and if the weights are chosen appropriately, ordered median functions can be inequity-averse

in the sense that they are strictly concave. They show that both the range and sum of pairwise

differences functions can be modeled using this approach, hence are particular cases of their

model. Similarly, López-de-los Mozos et al. (2008) consider the ordered absolute deviation

model, whose objective function is the ordered weighted average of the absolute deviations

from facilities to the median value (For a candidate location at x, denote its distance to a de-

mand node i as di(x). The cost function for demand node i with a certain fraction of demand

wi is yi(x) = wi|di(x) −M(x)| , where M(x) =
∑
i∈I widi(x). The objective function used is∑

i∈I λiy(i)(x), where y(1)(x) ≤ y(2)(x) ≤ ... ≤ y(m)(x) and λi ≥ 0 ∀i. Some specific cases of
this formulation are mean absolute deviation for λi = 0 ∀i and maximum absolute deviation

λi = 0 ∀i 6= m and λm = 1). They discuss the models for cyclic, tree and path networks.

Martin et al. (2013) minimize a convex function of the form
∑
i∈I y

2
i to ensure that violations

of soft constraints in nurses’ rosters are equitably distributed across nurses in a scheduling

problem. Similarly, Kunqi et al. (2007) maximize an additive concave utility function of the

form U =
∑
i∈I −W h

i /h for h ≥ 1, where Wi deotes the waiting time user i in a wireless

network and h is a parameter.

In communication engineering, one of the commonly used fairness concepts is proportional

fairness, which can be obtained by maximizing
∑
i∈I log(yi). An allocation y is proportionally

fair if for any other feasible allocation y′, the total proportional change (
∑
i∈I(y

′
i − yi)/yi) is

zero or negative when all outcomes are nonnegative. The proportional fairness concept can

be advocated from a game theoretic point of view as a proportionally fair allocation is also

the Nash bargaining solution, satisfying certain axioms of fairness (Bertsimas et al. (2011),

Crowcroft and Oechslin (1998), Kelly et al. (1998), Morell et al. (2008), Bonald et al. (2006),

Kelly et al. (2009), Walton (2011); see also Köppen (2013), Köppen et al. (2012) for a discussion

of proportional fairness within a relational framework and a symmetric version of this concept,

-rank- ordered proportional fairness). Proportional fairness is a specific case of a more general

fairness scheme called α − fairness, which maximize the following parametric class of utility
functions for α ≥ 0 (Bertsimas et al. (2012)) (see also Verloop et al. (2010) for a discussion of

α− fairness in multi-class queuing systems):

Uα(y) =


∑m
i=1

y1−αi
1−α for α ≥ 0, α 6= 1∑m

i=1 log(yi) for α = 1
.

Lexicographic maximin approach, which is a regularization of the Rawlsian maximin ap-

proach such that it satisfies strict monotonicity and PD, is another example (see Medernach

and Sanlaville (2012) for an interesting extension of this approach to resource allocation set-

tings where the demand of the users is uncertain, modeled by scenarios. The authors propose

a multicriteria approach where each scenario is treated as one criterion, i.e. the criterion is the

performance of the allocation policies under one precise scenario. They try to find solutions
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that are Pareto optimal fair, i.e. that is maximal for the lexicographic order).

There are also approaches that use a Schur-concave function and hence respect the weak

version of the PD only while failing to satisfy the strong version. For example, Hooker and

Williams (2012) consider allocation of utilities to individuals (or classes of individuals) and

propose a weakly Schur-concave aggregation function to be maximized. The function is based

on the idea of combining objectives of equity -they use a Rawlsian approach- and effi ciency.

The authors provide a mixed integer linear programming formulation of the allocation problem

and apply the formulation to a healthcare planning example.

A diffi culty with equitable aggregation functions is that the decision maker or modeller has

to select a specific aggregation function. In most settings there may not be a natural choice

of equitable aggregation. A set of approaches based on the concept of a unanimity order have

been developed to address this issue. Given a set F of functions f ∈ F , the unanimity order
with respect to F is the binary relation <∗over outcome vectors and defined as follows: for

any two allocation vectors y1 and y2 ∈ Y , y1 <∗ y2 ⇐⇒ f(x) < f(y) for all f ∈ F .
Note that unanimity order is a quasiorder. The approaches discussed so far in this section

maximize a particular concave, quasi-concave and Schur-concave function in their models. We

note that rather than using specific functions, if we consider the unanimity order for the set

of all concave, quasi-concave or Schur-concave functions, there is no difference between the

resulting order. This important result is summarized in the following theorem.

Theorem 4 For two allocation vectors y1 and y2, the following cases are equivalent:

1. U(y1) ≤ U(y2) for all U : U is increasing and Schur-concave Shorrocks (1983). (Note that

Shorrocks (1983) uses a strict version of the PD; hence strictly Schur-concave functions)

2. U(y1) ≤ U(y2) for all U : U is symmetric, increasing and quasi-concave (Rothschild and

Stiglitz (1973))

3. U(y1) ≤ U(y2) for all U : U is symmetric, increasing and concave (Rothschild and Stiglitz

(1973))

4. U(y1) ≤ U(y2) for all U : U is additive, increasing and concave. That is, U(g) =∑
i∈I

u(yi) where u is increasing and concave (Shorrocks (1983), Rothschild and Stiglitz

(1973))

Parts of Theorem 4 for the special case where
∑
i∈I y

1
i =

∑
i∈I y

2
i are proven by Atkinson

(1970) and Dasgupta et al. (1973) based on the results by Hardy et al. (1934) on majorization

(see also Marshall et al. (2009)). The results for the more general case (
∑
i∈I y

1
i 6=

∑
i∈I y

2
i ) can

be found in Rothschild and Stiglitz (1973) and Shorrocks (1983). This theorem states that the

unanimity ordering of a given set of alternatives under the set of all Schur-concave functions

is equivalent to the unanimity ordering under the set of all quasiconcave, concave functions or

additive functions of concave functions.

Some studies that design allocation systems over multiple periods optimize an aggregation

function at each period. They make sure that the aggregation is inequity-averse by updating

its parameters. Such an approach is used in Jeong et al. (2005) in a data traffi c scheduling

algorithm where the time is divided into multiple periods and at each period a weighted sum

of transmit data rates of the users of the system is maximized. The weight for each customer
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is updated at the beginning of each period to control the level of fairness, i.e. a larger weight

is assigned to a user whose previous receiving data rate was low. As an example, they suggest

using wi = A + Be−Ravg(i), where A and B are constants and Ravg(i) is the average data

rate of user i up to the scheduling period considered. Alsheddy and Tsang (2011) use the

same idea in assigning jobs to staff over multiple periods. They try to find an assignment

that is in line with employees’individual submitted plans by maximizing the number of such

plans satisfied in the solution. At each day d the objective function used is of the following

form: Max

∑
i∈I xiwi∑
i∈I wi

, where xi is 1 if the workplan of employee i is satisfied and wi is the

weight given to this workplan, which is updated through time in a way that gives more decision

power to the employees who experienced a low number of satisfied plans so far (on a day d,

wi = (d− sati)/d, where sati is the number of satisfied plans on previous days for employee i).
A multicriteria perspective: Equitable Effi ciency and Schur-concavity
The above approaches use particular functions in order to capture equity concerns. The

specific functional forms used are context dependent and different forms are adopted in dif-

ferent studies. Two common properties of these functions are that they are increasing or

nondecreasing (in a maximization problem) and inequity-averse in the sense that they satisfy

PD, though sometimes in a weak way as in Hooker and Williams (2012). Considering the

aggregation function approach from a multicriteria perspective, one can relate such functions

to the DM’s preferences and specify a set of properties that an equity-averse DM’s preference

model should satisfy. Kostreva and Ogryczak (1999) and Kostreva et al. (2004) take this point

of view and introduce the concept of equitable effi ciency. Given two distributions, the “more

equitable”one is distinguished based on a set of axioms defined on the DM’s preference model.

They call a social welfare function which is in line with this specific set of axioms an equi-

table aggregation function and a solution which maximizes an equitable aggregation function

equitably effi cient. This multicriteria decision making perspective is based on defining each

element of the outcome vector as a separate criterion to be maximized as explained below.

This discussion is based on the theory introduced in Kostreva and Ogryczak (1999).

Consider the following problem: max{f(x) : x ∈ Q} where X ∈ Rn is the decision space,
Y ∈ Rm is the outcome space and f(x) is a vector function that maps X to Y and Q is the

feasible set. A typical outcome vector is yk = (yk1 , y
k
2 , ..., y

k
m), where yki is the outcome value

corresponding to entity i ∈ I (i = 1, 2, ...,m) and k is the index of the alternative.

We denote the weak preference relation of the DM as � (the corresponding strict and

indifference relations are denoted by ≺ and ∼, respectively). Assume that the DM has a

preference model in which the preference relation satisfies the following axioms (Kostreva

et al. (2004)):

1.Reflexivity (R): y � y for all y ∈ Y .
2.Transitivity (T): (y1 � y2 and y2 � y3)⇒ y1 � y3, for all y1, y2, y3 ∈ Y.
3.Strict monotonicity (SM): y1 < y2 then y1 ≺ y2, for all y1, y2 ∈ Y .
4.Anonymity (A): (y) ∼ Πl(y) for all l = 1, ...,m!, for all y ∈ Rm, where Πl(y) stands for

an arbitrary permutation of the y vector.

5.Pigou-Dalton principle of transfers (PD): yj > yi ⇒ y ≺ y−εej+εei, for all y ∈ Rm,where
0 < ε < yj − yi, where ei, ej are the ith and jth unit vectors in Rm.

The anonymity axiom states that the corresponding preference relation should treat all the

permutations of a vector as indifferent. That is, the identities of the entities are irrelevant. This
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is in contrast to what we have called balance problems. The preference for equity is stated by

the PD axiom. The preference relations that satisfy R, T, SM, A and PD are called equitable

rational preference relations. Using equitable rational preference relations, the relations of

equitable dominance, equitable indifference and equitable weak dominance can be defined as

follows:

Definition 5 For any two outcome vectors y1 and y2,
y1 ≺e (/ �e / ∼e) y2 (y2 equitably dominates/ equitably weakly dominates/is equitably

indifferent to y1) iff y1 ≺ (/ � / ∼) y2 for all equitable rational preference relations �.

Note that “rational dominance”, i.e. the normal dominance concept, which is the intersec-

tion relation of all preference relations satisfying R, T and SM, implies equitable dominance,

but not vice versa.

Equitable dominance is also called generalized Lorenz dominance (see Shorrocks (1983)).

Generalized Lorenz dominance is an extension of the well-known Lorenz dominance concept

used in the economics literature to the cases where the means of the distributions are not

necessarily equal. An alternative is equitably effi cient if there is no alternative that equitably

dominates it. Note that the set of equitably effi cient solutions is a subset of the Pareto effi cient

set.

We have already defined (see definition 1) equitable aggregation functions. It so happens

that the equitable aggregations, i.e. Schur-concave functions are the functions that respect

axioms 1-5. That is, if an equitable rational preference relation is representable by a utility

function, the function has to be increasing strictly Schur-concave in a maximization problem

Kostreva et al. (2004). The equitably effi cient set is the set of alternatives each of which

maximizes at least one increasing strictly Schur-concave function.

There are two possible equity modelling approaches using such aggregations: The first

approach is choosing a suitable equitable aggregation function (Schur-concave function) and

optimizing it in the model. Optimizing a predefined aggregation function will return one of

the (possibly many) equitably effi cient solutions. The aggregation function based approaches

discussed previously, which optimize a strictly Schur-concave (Schur-convex) function are in

this category.

The second approach is finding the set of equitably effi cient solutions without specifying the

aggregation function further. This way one would obtain a set of alternatives that is guaranteed

to include the DM’s most preferred alternative as long as her utility function is (strictly) Schur-

concave. This approach is discussed in Kostreva and Ogryczak (1999) and Kostreva et al. (2004)

for multiple criteria linear problems and nonlinear problems, respectively. Baatar and Wiecek

(2006) define the equitable preference structure using a cone-based approach and propose a

two step method including two single objective nonlinear programs in order to find equitably

effi cient solutions.

As an application example, Ogryczak et al. (2008) consider equitable optimisation in band-

width allocation. For practical purposes, they consider a restricted set of criteria and find

equitable solutions for the restricted model using the reference point approach. A similar

approach is taken in Ogryczak (2007).

Mut and Wiecek (2011) generalize the concept of equitability. They define two different

relations which are more general than �e and investigate the axioms that these new relations
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satisfy. They derive the conditions under which the new preferences satisfy the original and

modified axioms of equitable preference.

In most of the above approaches the whole set of nondominated points or a subset of it is

found; hence the algorithms return multiple alternatives without using an interactive setting.

The studies we encountered that consider interactive approaches are Kostreva et al. (2004)

and Ogryczak et al. (2008), which use a reference point approach and Karsu et al. (2012),

which use the convex cones approach to incorporate DM’s preference information to guide the

selection or ranking process.

The classical multicriteria decision making problem settings include criteria that do not

have the same range, hence it is not appropriate to use equitable aggregation over the original

criteria values. However, in the reference point method, the outcome vectors are converted

to achievement vectors using scalarizing functions. The scalarizing function transforms the

outcomes into a uniform scale, which makes it possible to apply an equitable aggregation

on the transformed achievement scores. Kostreva et al. (2004) make this observation and

discuss the use of equitable aggregations for the reference point method. Using the same idea,

Dugardin et al. (2010) use the equitable dominance concept in a well-known multi-criteria

solution approach (NSGA2) to discard the alternatives which are competitive in only one

criterion. The authors introduce a function which scales different components of the objective

vector. This is an application where the equity concept is used in order to choose “good”

alternatives in a multi-criteria problem that does not have the impartiality property. These

applications show the two way link between the Pareto effi ciency and the equitable effi ciency

concept. In addition to generating equitably effi cient solutions using the classical MCDM

solution methods designed to generate Pareto effi cient solutions, one can also use the equitable

effi ciency concept to come up with Pareto effi cient solutions once the outcome vectors are

modified using appropriate scalarizations.

3.2 Handling Balance

Most of the approaches handle balance concerns by using an imbalance indicator, which mea-

sures deviation from a predefined level, which is chosen e.g. based on claims, needs or prefer-

ences. This approach is similar to an inequality index based approach to equitability, however

an imbalance indicator does not necessarily achieve its minimum at a distribution where each

entity receives the same amount.

Examples of applications handling the balance concept using this approach are as follows.

In a heterogeneous server system model, Armony and Ward (2010) consider equity over servers

with different service rates. They formulate the problem as a Markov decision process and solve

a related LP model, in which the customer waiting time is minimized along with a fairness

constraint on the workload division over servers with different skill levels. Specifically, they use

a constraint set that controls the fraction of the idle time that the server groups with different

paces have. These fractions are ensured to have pre-determined values, which are set by the

decision maker. Similarly, Ward and Armony (2013) set idleness ratios of server pools in a

queueing system in constraints.

Cook and Zhu (2005) allocate a fixed cost among the existing Decision Making Units

(DMU). In order to treat the DMUs in an equitable way, the authors ensure that the effi ciencies

of the DMUs remain unchanged after the allocation. Smith et al. (2009) and Smith et al. (2013)
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incorporate balance concerns over users of a public service provision system by minimizing

weighted negative and positive deviations from a standard service level specified by the DM.

Avi-Itzhak et al. (2007) and Avi-Itzhak et al. (2008) discuss a resource-allocation based

fairness measure, which assumes that every customer in a queuing system is entitled to an

equal share of the resource (server). Hence the discrimination of a customer i (with a service

requirement si) who arrives in apoch ai and departs at epoch di is as follows: si−
∫ di
ai

(1/m(t))dt,

where m(t) is the number of customers in the system. If the unfairness of a specific scenario is

of concern, it can be calculated by taking summary statistics over all discriminations in that

scenario. If the system unfairness is of concern, then the proposed unfairness measures are the

variance or expected absolute value of discrimination (as the expected value is zero).

In ground delay programs, the ration-by-schedule (RBS) rule is used as a reference. This

rule assigns the landing slots to unassigned flights on a First Scheduled First Served (FSFS)

basis based on the arrival times submitted at the beginning of the daily operations. The

studies that use the deviation from the FSFS solution as a measure of inequity (imbalance)

in arrival slot allocations are Ball et al. (2010), Balakrishnan and Chandran (2010), Barnhart

et al. (2012), and Glover and Ball (2013). In a queuing system Avi-Itzhak et al. (2008) review

two such seniority based fairness indicators, where FCFS rule is taken as the most equitable

rule and inequity (imbalance) is quantified using measures of deviation from this schedule. In

the first one the deviation is quantified by the number of slips (occurs when the customer of

concern overtakes another customer who arrived earlier) and skips (occurs when the customer

of concern is overtaken by another customer). In the second measure the following quantity is

used: c
∑
i∈I ai∆i+α, where ai is the arrival epoch of customer i, ∆i is the order displacement

of customer i, i.e., the number of positions customer i is pushed ahead or backward in the

schedule compared to the his position at the FCFS order and c > 0 and α are arbitrary

constants. They report that under steady state this quantity is equivalent to the variance of

the waiting time, up to a constant multiplier. Another measure takes into account both order

violation (in the form of skips) and size violation events, which occur when upon arrival, a

customer finds that another customer whose residual service is greater than or equal to the

service requirement of himself/ herself, departs earlier or concurrently. The total number of

such order and size violations is used as a measure of unfairness (Sandmann (2013)). In a

restaurant revenue management problem Bertsimas and Shioda (2003) ensure equity across

customers of the same size by using constraints that seat them on a FCFS basis.

Karsu and Morton (2014) propose a two dimensional framework to trade balance offagainst

effi ciency in resource allocation problems motivated by problems in R&D project selection.

They use imbalance indices which measure the deviation of an allocation from an ideally

balanced allocation the DM provides.

The deviation (cost) function, i.e. the imbalance indicator, can be the total absolute

deviation (Glover and Ball (2013)) or the sum of negative or positive deviations. There are also

studies that minimize the maximum componentwise deviation (Ball et al. (2010), Vitoriano

et al. (2011)) or use a constraint which ensures that maximum componentwise deviation is

below a pre-defined level (Smith et al. (2011), Balakrishnan and Chandran (2010)). In some

models designed to improve an existing system (e.g. the current transportation network)

any negative deviation from the status quo is forbidden by constraints as in Lo and Szeto

(2009). They propose a transportation network improvement model, which ensures that no
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origin-destination pair gets worse than the status quo in terms of consumer surplus, i.e. the

difference between what travelers would be willing to pay for travel and what they actually

pay. There are also studies that use a weighted total deviation from the weighted mean such as

Sherali et al. (2003), Sherali et al. (2006), Sherali et al. (2011) (
∑
i∈I wi|yi−

∑
i∈I wiyi|, where∑

i∈I wi = 1).

The above studies focus on keeping the total deviation from a predefined level at min-

imum, which may result in some componentwise deviations to be significantly larger than

others. Similar to equitable aggregation functions, convex functions are optimized in some

models to handle balance concerns. Such convex functions encourage fairness in the distri-

bution of deviation (cost) and hence avoid some entities deviate significantly for the sake of

minimizing total deviation. In that sense, convex functions can be considered as special types

of imbalance indicators, which measure deviation using a convex function. Exponential (cost)

functions and squared deviation functions are examples of such convex functions (Mukherjee

and Hansen (2007), Suzuki and Drezner (2009)). Mukherjee and Hansen (2007) propose a

dynamic stochastic integer programming model for the GDP that allows one to revisit the as-

signment in case of a change in airport operating conditions. They use a convex ground delay

cost function in their objective in order to ensure a uniform spread of ground delay across dif-

ferent flight categories. Kotnyek and Richetta (2006) consider the stochastic GDP and ensure

that the FSFS holds by using convex ground-hold cost functions. Lulli and Odoni (2007) use

the same idea in an Air Traffi c Flow Management model, where an equitable distribution of

delay is achieved by using objective function cost coeffi cients that are a convex function of

the tardiness of a flight. Similarly, Barnhart et al. (2012) use an exponential delay penalty

function. For each flight a worst-case FSFS delay is calculated and each interval delay beyond

this worst-case FSFS delay is penalized by an exponentially increasing amount. Similarly,

Bollapragada and Garbiras (2004) minimize a piecewise linear penalty function of deviations

from goals. In an access control policy design problem, Zhang and Shen (2010) incorporate

spatial equity into the model by using the weighted square sum of the average delay over dif-

ferent entry points. Huang et al. (2012) use convex disutility functions of unsatisfied demand

percentages of each node in a relief routing model. Hence, the whole demand of each node is

not necessarily supplied so as to save supply for other nodes.

It is also possible to use a scaling approach and define the outcome distribution as the per

capita allocation, i.e. yi/ni where ni is an attribute value, such as a measure showing the size

or need of an entity. For example in disaster relief models, the proportion of demand satisfied

in different demand nodes is used as a measure of service (Davis et al. (2013), Vitoriano et al.

(2011), Tzeng et al. (2007)). This scaling approach allows one to assume anonymity over

the scalarized outcome distribution and hence handle the balance concerns in an equitability

environment. Examples that use this scaling approach are used in different settings including

public policy (Johnson et al. (2010), Johnson (2003)), drug allocation to clinics (Swaminathan

(2003), Swaminathan et al. (2004)), water resources allocation (Wang et al. (2007), Wang et al.

(2008)), sequential resource allocation (Geng et al. (2014)), transportation network design

(Szeto and Lo (2006)) and scheduling (Higgins and Postma (2004)).
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4 Conclusion

Although most (of the early) attempts in operational research focused on effi ciency concerns,

there is a vast amount of applications where equity is an additional concern. The need for

equity is appreciated by the OR practitioners and academicians as can be observed by the re-

cent increase in the number of OR papers, which re-consider some of the well-known problems

such as knapsack, assignment and location problems with an effort to incorporate equity con-

cerns. The applications that require explicit consideration of equity appear in a broad range

of situations both in the public and private sector.

In this paper, we provide a review of the approaches that are used to handle equity concerns

by optimizing mathematical models. We focus on the studies that consider equity alongside

other, mostly effi ciency-related, concerns. We first discuss two equity related concepts: equi-

tability, and balance. We discuss the differences between these two concepts along with their

applications. Most of the approaches in our review can be classified as either being concerned

with equitability, i.e. assuming anonymity or with balance, i.e. distinguishing entities with

respect to an attribute indicating for example need, claim or preference. Handling equity by

promoting diversity is an indirect approach which is discussed only in a few papers and it is

possible to define such diversity concerns as a special case of balance or equitability concerns.

We provide a detailed discussion of the solution approaches designed to incorporate equi-

tability and balance concerns. We categorise the solution approaches to problems involving

equitability concerns into three categories. The first and the crudest approach is the Rawl-

sian (maxmin) approach, which compares alternative distributions based on the amount the

worst-off entity receives. In the second approach, an inequality measure is used either in a

constraint or as a criterion so as to quantify equity. When the inequality index is used in a

constraint in the model, inequity is kept below a certain threshold by this constraint. The

inequality measure can also be defined as a separate criterion alongside other effi ciency related

criteria, resulting in a multi-criteria model. Bicriteria equity/effi ciency models defined this

way are easy to solve. Inequality indices are useful as summary measures but should be used

with caution as they may lead to oversimplification of the equity concept. Understanding the

strengths and weaknesses of each index and choosing the most appropriate one requires some

knowledge of the underlying theory of inequality measurement.

The last approach to equitability is based on using inequity-averse aggregation functions

of the outcome distributions. Some studies using this approach maximize specific inequity-

averse functions in their models. Multicriteria decision making concepts provide us with a

means to relate a set of inequity-averse functions with a set of axioms on the underlying

preference relation of a DM. Two equity-related axioms are additionally assumed for a rational

DM’s preference relation: anonymity and the Pigou-Dalton principle of transfers. The set of

functions that represent such preference relations are called equitable aggregations and all such

functions are Schur-concave in a maximization problem. These aggregations can be used as

scalarizing functions to obtain the set of nondominated (equitably effi cient) solutions or as the

single objective function to be optimized to obtain a specific nondominated solution.

Balance concerns are handled in two main ways. The first one is based on using imbalance

indicators, which measure the deviation from a reference solution which is considered as bal-

anced. These indicators can be functions of various forms including convex deviation functions,

which distribute deviation in an equitable way across the entities. The second way to han-
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dle balance concerns is to convert balance problems into equitability problems by normalising

allocations, hence making it possible to use any of the equitability-handling approaches.

Among the approaches used to handle equitability concerns, finding the set of equitably

effi cient solutions can be used as a “gold standard”for other approaches owing to its reasonably

weak assumptions on the underlying preference relation (the DM can have any type of Schur-

concave function). This multicriteria approach is more attractive than an inequality index

based approach as specifying an inequality index may be diffi cult for the DM. On the other

hand, the approaches that find the set of equitably effi cient solutions are computationally

complex. One way to choose from these two extremes would be relying on the equitable

aggregation concept when the underlying optimisation problem at hand is relatively simple

and easy to solve; and using an inequality index when the problem is less tractable.

We see great potential for further research in improving the decision support process in

multicriteria problems where equity is a concern. Further research on guiding the DM through

the set of candidate alternatives (e.g. the nondominated alternatives) could be usefully per-

formed. This applies to multicriteria models in both inequality (or imbalance) index based and

aggregation function based approaches. Selecting the “best”alternative requires information

on the tradeoff between the criteria unless there is a single alternative which is better than

the others in terms of all criteria, which is unlikely. Hence, in most of the multicriteria math-

ematical modelling approaches which address equity concerns using inequality or imbalance

indices, a single alternative is obtained by maximizing a weighted sum of the criteria with

predetermined weights. A more robust approach would be presenting the DM with a subset of

solutions or using an interactive procedure rather than predefined weights. Which approach is

more appropriate depends on the problem context. In some cases, presenting the DM with a

subset of “good” solutions for further evaluations may be required from the analyst whereas

in some others decision support may be required until the decision maker makes the final se-

lection. Similarly, in equitable aggregation based multicriteria models, even if some or all the

equitably effi cient solutions are found and presented to the DM, it may be diffi cult for him to

choose from this set. Appropriate decision support would be required if the decision maker

wants to obtain a single solution. This renders interactive approaches relevant and necessary

in such settings.

Most of the problems in OR can be categorized into one of three classes based on what

is required from the decision support. These are finding the best solution (or a subset of

good solutions), ranking and sorting (Roy (1971), Figueira et al. (2005)). All the papers in

our review of the operational research literature consider the first type although there may be

ranking or sorting problems in which equity should be considered. An example of a ranking

problem involving equity concerns arises naturally in intercountry comparisons based on income

inequality and social welfare. This is one of the classical topics in the theory of equity as it

has been discussed in economics. MCDM optimisation tools can be relatively easily adapted

for ranking and sorting problems that involve equity concerns: See Sen (1973) for a discussion

and Karsu et al. (2012) for an interactive ranking algorithm that is based on the equitable

effi ciency concept. An interesting application would be finding ways to sort different countries

in terms of social welfare, or to sort different policy decisions in terms of the resulting social

welfare.

In many cases addressing fairness concerns results in a decrease in effi ciency. A relevant
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question is how much one sacrifices from effi ciency when a “fair”solution is adopted. Observing

the tradeoffbetween effi ciency and equity would make the DMs more comfortable when making

decisions and communicating the decisions to the stakeholders. For example, if the effi ciency

loss is negligible, the DM would find it easier to support a solution that ensures fairness. On

the other hand if the effi ciency loss is significant, a compromise solution can be selected. There

are studies in the literature that analyze the price of fairness, i.e. the effi ciency difference

between the following two cases: selecting a very aggressive inequality averse approach and

not using an inequality averse approach (Bertsimas et al. (2011), Bertsimas et al. (2012)). This

concept can be generalized to see the extend to which selecting the “wrong”inequality approach

affects the solutions. Analyzing robustness of solutions with respect to different inequity-averse

approaches awaits further attention. There are some initial attempts to explore the similarities

of different inequality measures used in the location context (see e.g. Mulligan (1991), Lopez-

de-los mozos and Mesa (2003) and other references therein) but there is still more research to

be done. As pointed out in Lopez-de-los mozos and Mesa (2003) an axiomatic introduction of

the equality (and imbalance) measures could throw some light on the question of how similar

different measures are. Even when an inequality or imbalance index is chosen and used in a

constraint, which controls its value by a threshold, sensitivity analysis can be performed to see

the effect of the threshold value on the optimal solution. Such an analysis would help us to

suggest more robust solutions but was not discussed in most of the studies (see Batta et al.

(2014) for an analysis in the context of a p-median problem on a network, where the authors

try to find how bad a locational choice can be provided that the decision makes use dispersion,

population and equity criteria).

To sum up, we believe that being a practically relevant and theoretically challenging con-

cept, equity can stimulate a number of research questions for operational researchers especially

in the areas of decision support, different problem types, and robustness.
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