Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Temperature dependent optical properties of InGaN/GaN quantum well structures

Hurst, P. and Dawson, P. and Levetas, S.A. and Godfrey, M.J. and Watson, I.M. and Duggan, G. (2001) Temperature dependent optical properties of InGaN/GaN quantum well structures. Physica Status Solidi B, 228 (1). pp. 137-140. ISSN 0370-1972

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We have investigated the variation of the photoluminescence intensity and decay time as a function of temperature of a series of InGaN/GaN quantum well structures in which the number of quantum wells was varied. All the samples exhibited a decrease in photoluminescence intensity and decay time with increasing temperature with the rate of decrease being reduced as the number of quantum wells was increased. We have compared these results with a theoretical model which describes the effects of thermally excited carrier escape and recapture. We find reasonable agreement with the results of the model and the experiments for the samples incorporating only a few quantum wells supporting the idea that thermally excited carrier loss is the main non-radiative recombination path.