
On the Solution of Min-Max Problems in Robust
Optimization

Massimiliano Vasile

Department of Mechanical & Aerospace Engineering,
University of Strathclyde. 75 Montrose Street, G1 1XJ Glasgow, UK

Abstract. The paper presents a simple memetic algorithm for the solution of
min-max problems. It will be shown how some of the heuristics provide the anal-
ogous mechanism of other evolutionary and non-evolutionary heuristics proposed
in the literature. It will be also argued that some existing heuristics might not be
sufficient to correctly solve the problem and to avoid the so called red-queen
effect.

1 Introduction

Nowadays the prediction of the performance of a system is essentially based on com-
puter simulations. The uncertainty in the computer model and input parameters, how-
ever, implies that the predicted behavior of the system can have a considerable vari-
ability. The worst case scenario is defined as the condition in which the performance
of the system is the worst possible among all those who can be predicted with current
information. Designing the system to be optimal in the worst case scenario is the most
conservative but also the most robust solution and provide a lower limit on the achiev-
able performance of the system. The optimization of the worst case scenario translates
into the solution of a global min-max problem in which the worst case is defined as a
maximum in the uncertain space and the optimal design corresponds to the minimum of
all the maxima in the design space. This paper presents an evolutionary-based algorithm
for the solution of min-max problems coming from worst-case scenario optimization.
Past examples of the use of evolutionary optimization can be found in [1, 6] that com-
bined evolutionary computation and surrogate modelling. Other solution methods in
the literature are based on more deterministic approaches in combination with surrogate
modelling, like in [2]. This paper presents a memetic strategy that intentionally does not
make use of surrogate models. The goal of the paper is to demonstrate the ability of the
proposed strategy to consistently identify the global solution of the min-max problem.
The paper starts with a general formulation of the min-max problem addressed in this
paper. Section 3 then introduces the proposed algorithm and related heuristics. Section
4 presents the test benchmark while Section 5 shows some preliminary results.

2 Min-Max Problem

The problem of interest can be formulated as follows:

min
d∈D

max
u∈U

f(d,u) (1)

2 Massimiliano Vasile

where d is a vector of design (or control) variables defined in the design space D, u is a
vector of uncertain variables, defined in the uncertain space U , and f is the performance
index of the system or process defined by the combination of the uncertain and design
parameters. It is important to underline that in the general case, both the minimization
over D and the maximization over U are global optimization problems and that f is
multimodal and can be non differentiable everywhere in U and D.

3 Solution Algorithms

The algorithm proposed in this paper is a combination of the one proposed in [3] and [2].
In [2] it is proposed to iteratively solve the following two problems, one after the other:

ua = argmaxu∈Uf(dmin,u) (2)

dmin = argmind∈D{ max
ua∈Au

f(d,ua)} (3)

where the archive Au is a collection of all the ua generated by the solution of problem
(2) for each new dmin generated by the solution of problem (3). Problem (2) can be
seen as a restoration of the maximum condition on U , therefore the whole process can
be considered as a minimization-restoration loop.

It is important, at this point to observe that, if a population-based method is used to
solve problem (3), the subproblem maxua∈Au f(d,ua) can be interpreted as a cross-
check of the u associated to a population P of d values as in [3]. For each d, in fact,
problem (3) requires selecting the ua,max that maximizes f among all the ua found thus
far. This principle is equivalent to the game theoretic Nash ascendancy relationship used
in [5], as it corresponds to selecting the best strategy, among all the ones that the players
in the population P can play. In the scheme proposed by [2], however, the minimization
over D is performed assuming that the elements in the archive are not updated while f
is minimized over D. The main consequence is that convergence can be achieved if the
archive Au contains a sufficient number of elements. In [3] instead the solutions were
recalculated either running a global or a local optimization as d was changing. The
main reason for the latter strategy is that a variation of d, seen from the space U , can
correspond to a change in the location of the maxima. When this occurs the solution of
problem (3) can lead to values of dmin such that the maximum of f over Au is very far
even from a local optimum. The whole process, therefore, might iterate for a long time
between minimization and restoration without converging. This is what can be called
red queen effect.

Here, it is proposed to solve both problems (2) and (3) with Inflationary Differen-
tial Evolution [4] and to allow the algorithm to compute for each d a local maximum
u∗
a starting from each element in Au. The value dmin with associated local maximum

u∗
a,max = argmaxu∗

a∈A∗
u
f(dmin,u

∗
a), are then saved in the archive Ad and the el-

ements in the archive Ad are cross-checked to maximize the change to identify the
global maximum in U . The overall strategy is presented in Algorithm 1.

On the Solution of Min-Max Problems in Robust Optimization 3

Algorithm 1 IDEAminmax

Initialize d̄ at random and run ua = argmaxu∈Uf(d̄,u)
Au = Au

∪
{ua}

while nfeval < nfeval,max do
Run dmin = argmind∈D{maxu∗

a∈A∗
u
f(d,u∗

a)}
Run ua = argmaxu∈Uf(dmin,u)
if f(dmin,u

∗
a,max) < f(dmin,ua) then

Au = Au

∪
{ua}, Ad = Ad

∪
{dmin,ua}

else
Au = Au

∪
{u∗

a,max}, Ad = Ad

∪
{dmin,u

∗
a,max}

end if
end while
Run Cross Check Algorithm 3 over the archive Ad

Algorithm 2 maxu∗
a∈A∗

u
f(d,u∗

a)

for all the elements in Au do
Run local search from ua ∈ Au and compute u∗

a = argmaxu∈Uf(dmin,u)
Add local maximum to the set of local maxima A∗

u = A∗
u

∪
{u∗

a}
end for
u∗
a,max = argmaxu∗

a∈A∗
u
f(dmin,u

∗
a)

4 Test Benchmark

In order to test the algorithm presented in the previous section we use the same test
benchmark of 13 toy problems proposed in [2] and we add 4 more that have a higher
level of complexity. The four additional test cases are in Table 1 where n represents the
number of dimensions in D and U (i.e. the total size of the problem is 2n).

Table 1. Min-Max Test Benchmark

ID Function Boundaries
EM1 f(d,u) =

∑
i((ui − 3di) sinui + (di − 2)2) d ∈ [0, 2π]n,u ∈ [0, 20]n

MV8 f(d,u) =
∑n

i ((2π − ui) cos(ui − di)− ui sinui + 0.1di) d ∈ [−5, 2]n,u ∈ [0, 2π]n

MV9 f(d,u) =
∑n

i ((di − ui)(cos(−5ui + 3di))) d ∈ [−5, 2]n,u ∈ [0, 2π]n

MV11 f(d,u) =
∑n

i (−10di
√

abs(cos(diui)) + ui + 5(di − 5)2) d ∈ [1, 9]n,u ∈ [−2, 2]n

5 Some Results

The results in Table 2 show the total number of function evaluations required to reach
the same, or better, accuracy than Ref. [2] on the 13 benchmark problems. The values

4 Massimiliano Vasile

Algorithm 3 Cross Check
Initialize ∆, tol∆
while ∆ > tol∆ do

for all the elements in Ad do
Compute local maximum f(di,u

∗
j) from uj ∈ Ad

∆ = f(di,u
∗
j)− f(di,ui)

if ∆ > tol∆ then
ui = u∗

j

end if
end for

end while

are the mean and standard deviation (over 100 runs) of the difference between the exact
solution and the solution found by the algorithm proposed in this paper. It is worth
reminding that no surrogate is used in this paper, hence the tests are only assessing
the ability of the evolutionary process in Algorithms 1 and 2 to converge. It is also
interesting to note that in all the 13 cases convergence is achieved without the need
for tracking the local maxima as the number of local maxima is limited and the basins
of attraction are large. On the other hand, the results obtained with Algorithm 1 tend
to be more conservative than the ones in Ref. [2], because the algorithm in Ref. [2]
finds solutions that are not always maximising f in U . The number of function calls
is between 3 and 40 times higher than the one in Ref. [2], due to the absence of the
surrogate model, and between 10 and 200 times lower than the one in [5]. It has to
be said, however, that the quality of the result depends on the ratio of the function
evaluations allocated to the optimization in D and in U . At the same time, previous
work by the author [6] has shown how the use of surrogates can provide up to 98% of
reduction in function calls, which is in line with the results in [2]. Figure1(a) shows the

Table 2. Min-Max Test Benchmark [2]

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13
nfeval 5000 5000 15000 7000 4000 50000 90000 500 4000 5000 5000 2000 10000
mean 4e-8 1e-4 2e-5 6e-4 3e-5 5e-7 3e-3 1e-17 0.0 2e-16 7e-5 4e-16 8e-5
std 2e-7 9e-4 1e-6 1e-3 5e-5 9e-7 3e-3 1e-16 0.0 2e-15 3e-4 2e-15 2e-4

outcome of 100 runs of Algorithm 1, with and without local search, applied to MV9 for
n = 4. The test with no local search was run for a total of 1.5e6 function evaluations,
while the test with local search was run for a total of 5e5 function evaluations. The
continuous line is the exact solution with value f∗ = 14.415. This results demonstrates
that if the number of local maxima is very high and the basins of attraction are small
then the archive Au would need to be filled with a very high number of samples to
provide good convergence. In other words, looking for the maximum f over the values
in the archive Au, for each value of d, is equivalent to a random sampling drawing

On the Solution of Min-Max Problems in Robust Optimization 5

samples from the distribution of the local maxima found so far. If d is changing the
location of the maxima then random sampling could be insufficient (unless the number
of samples is very high). On the other hand, if for every d one was searching for the
maximum of the local maxima, then the process would be equivalent to a multistart
local search in which the starting points are drawn from the distribution of the local
maxima found so far. In this later case, although the search in U is significantly more
expensive, convergence can be achieved for a lower number of elements in the archive
Au. All this is even more true if the size of the basins of attraction of the minima in D

0 20 40 60 80 100
12

12.5

13

13.5

14

14.5

15

Run

fo
bj

MV9 for n=4

Local search @ 5e5 feval
No local search @1.5e6 feval
Exact solution

(a)

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

2

4

Run

fo
bj

MV11 for n=1 @ 5000 feval

No local search
Local search
Exact solution

(b)

Fig. 1. Results over 100 runs:(a) function MV9 for n=4 (b) function MV11 for n=1.

is significantly larger than the size of the basins of attraction of the maxima as in the
case of function MV11. Figure1(b) shows the result of the application of Algorithm1
to the solution of problem MV11 for n = 1, The reference solution, marked with a
red line, has value f∗ = 1.5659. In the case the number of local maxima is low or d
does not change the location of the maxima, then the use of the simple function values
is sufficient as can be seen if Figures 2 where Algorithm 1, with no local search, is
applied to the solution of problems EM1 and MV8 for n = 32. The reference solution
for EM1 has value f∗ = 348.9897 and for MV8 has value f∗ = 99.2825.

6 Conclusions

The memetic algorithm proposed in this paper was shown to efficiently and consis-
tently provide solutions to global min-max single objective problems with up to 64
dimensions. In some cases it was shown that a search in the space of the local maxima
is required to avoid the red queen effect and converge to a globally optimal solution.
The algorithm does not use any surrogate model to further reduce the computational
cost, however it was demonstrated, in previous work by the author, that a gain up to
98% is potentially achievable.

6 Massimiliano Vasile

0 20 40 60 80 100
338

340

342

344

346

348

350

Run

fb
oj

EM1 n=32 @ 250000 feval

IDEAminmax
Exact solution

(a)

0 20 40 60 80 100
99

99.5

100

100.5

101

101.5

102

102.5

103

103.5

104

Run

fb
oj

MV8 n=32 @ 600000 feval

IDEAminmax
Exact solution

(b)

Fig. 2. Results over 100 runs:(a)function EM1 for n=32 (b) function MV8 for n=32.

References

1. A. Zhou and Q. Zhang, “A Surrogate-Assisted Evolutionary Algorithm for Minimax Opti-
mization,” 2010 IEEE Conference on Evolutionary Computation (CEC 2010), Jul. 2010.

2. J. Marzat, E. Walker and H. Piet-Lahanier, “Worst-case Global Optimization of Black-Box
Functions through Kriging and Relaxation,” J. Global Optim. vol. 55, pp. 707-727, 2013.

3. M. Vasile, E. Minisci and Q. Wijnands, “Approximated Computation of Belief Functions for
Robust Design Optimization,” 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dy-
namics, and Materials Conference, Apr. 2012.

4. M. Vasile, E. Minisci and M. Locatelli, “An Inflationary Differential Evolution Algorithm for
Space Trajectory Optimization,” Trans. Evol. Comp. vol. 15, pp. 267-281, Apr. 2011.

5. R. I. Lung, D. Dumitrescu, ”A New Evolutionary Approach to Minimax Problems”,2011
IEEE Congress on Evolutionary Computation (CEC),5-8 June 2011, New Orleans, US, pp.
1902-1905, 10.1109/CEC.2011.5949847.

6. S. Alicino, M. Vasile ”Surrogate-based Maximisation of Belief Function for Robust Design
Optimisation”. 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, April 8-11, 2013, DOI: 10.2514/6.2013-1757.

