Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Capturing the Knudsen layer in continuum-fluid models of non-equilibrium gas flows

Lockerby, Duncan A. and Reese, Jason M. and Gallis, Michael A. (2005) Capturing the Knudsen layer in continuum-fluid models of non-equilibrium gas flows. AIAA Journal, 43 (6). pp. 1391-1393. ISSN 0001-1452

[img]
Preview
Text (strathprints005221)
strathprints005221.pdf - Accepted Author Manuscript

Download (189kB) | Preview

Abstract

In hypersonic aerodynamics and microflow device design, the momentum and energy fluxes to solid surfaces are often of critical importance. However, these depend on the characteristics of the Knudsen layer - the region of local non-equilibrium existing up to one or two molecular mean free paths from the wall in any gas flow near a surface. While the Knudsen layer has been investigated extensively using kinetic theory, the ability to capture it within a continuum-fluid formulation (in conjunction with slip boundary conditions) suitable for current computational fluid dynamics toolboxes would offer distinct and practical computational advantages.