Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Capturing the Knudsen layer in continuum-fluid models of non-equilibrium gas flows

Lockerby, Duncan A. and Reese, Jason M. and Gallis, Michael A. (2005) Capturing the Knudsen layer in continuum-fluid models of non-equilibrium gas flows. AIAA Journal, 43 (6). pp. 1391-1393. ISSN 0001-1452

[img]
Preview
PDF (strathprints005221.pdf)
strathprints005221.pdf

Download (297kB) | Preview

Abstract

In hypersonic aerodynamics and microflow device design, the momentum and energy fluxes to solid surfaces are often of critical importance. However, these depend on the characteristics of the Knudsen layer - the region of local non-equilibrium existing up to one or two molecular mean free paths from the wall in any gas flow near a surface. While the Knudsen layer has been investigated extensively using kinetic theory, the ability to capture it within a continuum-fluid formulation (in conjunction with slip boundary conditions) suitable for current computational fluid dynamics toolboxes would offer distinct and practical computational advantages.