Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Capturing the Knudsen layer in continuum-fluid models of non-equilibrium gas flows

Lockerby, Duncan A. and Reese, Jason M. and Gallis, Michael A. (2005) Capturing the Knudsen layer in continuum-fluid models of non-equilibrium gas flows. AIAA Journal, 43 (6). pp. 1391-1393. ISSN 0001-1452

[img]
Preview
PDF (strathprints005221.pdf)
strathprints005221.pdf

Download (297kB) | Preview

Abstract

In hypersonic aerodynamics and microflow device design, the momentum and energy fluxes to solid surfaces are often of critical importance. However, these depend on the characteristics of the Knudsen layer - the region of local non-equilibrium existing up to one or two molecular mean free paths from the wall in any gas flow near a surface. While the Knudsen layer has been investigated extensively using kinetic theory, the ability to capture it within a continuum-fluid formulation (in conjunction with slip boundary conditions) suitable for current computational fluid dynamics toolboxes would offer distinct and practical computational advantages.