Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The velocity boundary condition at solid walls in rarefied gas calculations

Lockerby, Duncan A. and Reese, Jason and Emerson, David and Barber, Robert W. (2004) The velocity boundary condition at solid walls in rarefied gas calculations. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 70 (1). ISSN 1063-651X

[img]
Preview
Text (strathprints005219)
strathprints005219.pdf - Accepted Author Manuscript

Download (519kB) | Preview

Abstract

Maxwell's famous slip boundary condition is often misapplied in current rarefied gas flow calculations (e.g., in hypersonics, microfluidics). For simulations of gas flows over curved or moving surfaces, this means crucial physics can be lost. We give examples of such cases. We also propose a higher-order boundary condition based on Maxwell's general equation and the constitutive relations derived by Burnett. Unlike many other higher-order slip conditions these are applicable to any form of surface geometry. It is shown that these "Maxwell-Burnett" boundary conditions are in reasonable agreement with the limited experimental data available for Poiseuille flow and can also predict Sone's thermal-stress slip flow - a phenomenon which cannot be captured by conventional slip boundary conditions.