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Résumé — — Les écoulements multiphasiques en milieux poreux conduisent à la solution de systèmes
d’équations aux dérivées partielles (EDP) à coefficients très hétérogènes. Nous nous concentrons sur les
méthodes de décomposition de domaine avec recouvrement de type Schwarz sur calculateurs parallèles
et sur les méthodes multi-échelles. Nous présentons un espace grossier [23] qui est robuste, même en
présence de telles hétérogénéités. L’approche méthodes de décomposition de domaine à deux niveaux
est comparée aux méthodes multi-échelles.

Abstract — — Multiphase, compositional porous media flow models lead to the solution of highly
heterogeneous systems of Partial Differential Equations (PDEs). We focus on overlapping Schwarz
type methods on parallel computers and on multiscale methods. We present a coarse space [23] that
is robust even when there are such heterogeneities. The two-level domain decomposition approach is
compared to multiscale methods.

1 INTRODUCTION

Multiphase, compositional porous media flow models, used
in reservoir simulations or basin modeling, lead to the so-
lution of complex non linear systems of Partial Differential
Equations (PDEs). These PDEs are typically discretized us-
ing a cell-centered finite volume scheme and a fully implicit
Euler integration in time in order to allow for large time
steps. After Newton type linearization, one ends up with the
solution of a linear system at each Newton iteration which
represents up to 90 percents of the total simulation elapsed
time. The corresponding pressure block matrix is related to

the discretization of a Darcy equation with high contrasts
and anisotropy in the coefficients. We focus on overlapping
Schwarz type methods on parallel computers and on multi-
scale methods.

Coarse spaces are instrumental in obtaining scalability
for domain decomposition methods. For matrices arising
from problems with smooth coefficients, it is possible to
build efficient coarse spaces based on domain wise constant
vectors, see [29] and references therein. For problems with
high heterogeneities, these simple coarse spaces do not
work well. Here, we present a recent coarse space [23]
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that is robust even when there are such heterogeneities.
We achieve this by solving local generalized eigenvalue
problems which isolate the terms responsible for slow
convergence. Building efficient coarse spaces is closely
related to multiscale methods which also aim to reduce the
computational cost of large scale problems.

An outline of the paper is as follows. Section 2 consists
in an introduction to one level Schwarz methods. Material
is basic but the presentation is quite new. In § 3, we present
a recent spectral coarse space which adapts automatically
to the heterogeneities of the problem. In § 4 we present
results of large scale computations. In § 5, it is compared to
multiscale methods. In section 6, we conclude and present
prospects on adaptation of the spectral coarse space to finite
volume discretizations.

2 SCHWARZ METHODS

We start with the original Schwarz algorithm [27] at the
continuous (i.e. partial differential equations) level whose
parallel version is named Jacobi-Schwarz method (JSM).
We introduce two variants that are at the origin of the pop-
ular additive Schwarz method (ASM) and restricted addi-
tive Schwarz (RAS [4]) algorithms. The first one has been
the subject of hundreds of papers (see [29] and references
therein). The second one is the default parallel solver of
the parallel package software PETSc [2]. This presenta-
tion shows in a unified setting the connections between these
three algorithms.

2.1 Three Schwarz Algorithms at the continuous
level

Hermann Schwarz was a German analyst of the 19th cen-
tury. He was interested in proving existence and uniqueness
of the Poisson problem. At his time, there were no Sobolev
spaces nor Lax-Milgram theorem. The only available tool
was the Fourier transform, limited by its very nature to sim-
ple geometries. In order to consider more general situations,
H. Schwarz devised an algorithm based on solving itera-
tively Poisson problem set on a union of simple geometries.
Let the domain Ω be the union of a disk and a rectangle, see
Figure 1 and consider the Poisson problem:
Find u : Ω→ R such that:

−∆u = f in Ω

u = 0 on ∂Ω.
(1)

The Schwarz algorithm is an iterative method based on
solving alternatively subproblems in domains Ω1 and Ω2.

Ω1 Ω2

Figure 1

A complex domain Ω made from the union of two simple ge-
ometries
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−∆(un+1
1 ) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω
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then,
−∆(un+1
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un+1

2 = 0 on ∂Ω2 ∩ ∂Ω

un+1
2 = un+1

1 on ∂Ω2 ∩Ω1.
(2)

H. Schwarz proved the convergence of the algorithm and
thus the well-posedness of the Poisson problem in complex
geometries.

With the advent of digital computers, this method also ac-
quired a practical interest as an iterative linear solver. Sub-
sequently, parallel computers became available and a small
modification of the algorithm makes it suited to these archi-
tectures. It is sufficient to solve concurrently in all subdo-
mains, i = 1, 2:

−∆(un+1
i ) = f in Ωi

un+1
i = 0 on ∂Ωi ∩ ∂Ω

un+1
i = un

3−i on ∂Ωi ∩Ω3−i.

(3)

It is easy to see that if the algorithm converges, the solutions
u∞i , i = 1, 2 in the intersection of the subdomains take the
same values. Indeed, in the overlap Ω12 := Ω1 ∩ Ω2, let
e∞ := u∞1 − u∞2 . By the last line of (3), we know that e∞ = 0
on ∂Ω12. By linearity of the equation, we also have that e∞

is harmonic. Thus, e∞ solves the homogeneous well posed
BVP:

−∆(e∞) = 0 in Ω12
e∞ = 0 on ∂Ω12

and thus e∞ = 0 .
Algorithms (2) and (3) act on the local functions (ui)i=1,2.

In order to write algorithms that act on global functions in
H1(Ω), the space in which problem (1) is naturally posed,
we need extension operators, Ei so that for a function wi :
Ωi 7→ R, Ei(wi) : Ω 7→ R is the extension of wi by zero
outside Ωi. We also need partition of unity functions χi :



V Dolean et al. / Two-level domain decomposition methods for highly heterogeneous Darcy equations. Connections with multiscale methods 3

Ωi 7→ R, χi ≥ 0 and χi(x) = 0 for x ∈ ∂Ωi and such that:

w =

2∑
i=1

Ei(χi w|Ωi ) (4)

for any function w : Ω 7→ R. This definition of a partition
of unity is closer to the computer implementation than the
classical definition of a partition of unity functions.

There are two ways to write related algorithms that act on
functions un ∈ H1(Ω). The first possibility is : Let un be
an approximation to the solution to the Poisson problem (1),
un+1 is computed by solving first local subproblems:

−∆(un+1
i ) = f in Ωi

un+1
i = 0 on ∂Ωi ∩ ∂Ω

un+1
i = un on ∂Ωi ∩Ω3−i.

(5)

and then gluing them together using the partition of unity
functions:

un+1 :=
2∑

i=1

Ei(χi un+1
i ) . (6)

A second possibility consists in replacing the above formula
by a simpler formula not based on the partition of unity:

un+1 :=
2∑

i=1

Ei(un+1
i ) . (7)

Starting from the original Schwarz algorithm (2) that is se-
quential, we have thus three continuous algorithms that are
essentially parallel:
• Algorithm (3) Jacobi Schwarz Method (JSM)

• Algorithm (5)-(6) Restricted Additive Schwarz (RAS)

• Algorithm (5)-(7) Additive Schwarz Method (ASM)
These algorithms although closely related are different in
nature. The JSM method acts on a pair of local functions
(un

1 un
2) whereas RAS and ASM act on a global function un.

Note that in the overlapping region, algorithms RAS and
ASM update the solution in a different way. Algorithm ASM
seems rather bizarre since it does not converge to the exact
solution in the intersection Ω1 ∩ Ω2. But its algebraic form
given by (10) when used a preconditioner as explained in
the sequel has the advantage to be symmetric positive defi-
nite (SPD). On the contrary the algebraic counterpart to RAS
given by (9) is unsymmetric.

2.2 Schwarz Algorithms at the algebraic level

So far, we have given a continuous presentation of domain
decomposition methods. Actually, these methods are used
in their algebraic form to solve linear systems arising from
the discretization of partial differential equations. We now
give the matrix counterpart of these algorithms.
For this, we first give a kind of dictionary to go from the
continuous level to the discrete one:

– the counterparts of a domain Ω and of an overlapping de-
composition Ω = ∪N

i=1Ωi are a set of degrees of freedom
(d.o.f.) N and a decomposition in subsets N = ∪N

i=1Ni.

– a function u : Ω→ R corresponds a vector U ∈ R#N .

– the restriction of a function u : Ω → R to a subdomain
Ωi, 1 ≤ i ≤ N is analog to the restriction Ri U of a vector
U ∈ R#N to subsetNi. Matrix Ri is a Boolean rectangular
of size #Ni × #N .

– similarly, Ei(ui) the extension by zero of a function ui :
Ωi → R to a function Ω→ R corresponds at the algebraic
level to RT

i Ui where RT
i is the transpose of matrix Ri and

Ui ∈ R#Ni is a local vector.

– the counterparts of partition of unity functions χi, 1 ≤ i ≤
N are diagonal matrices with positive entries, of size #Ni×

#Ni s. t. Id =
∑N

i=1 RT
i Di Ri.

– After discretization, solving Poisson problem (1) amounts
to solving a SPD linear system

A U = F . (8)

– Solving a local subproblem in a subdomain Ωi such as in
equations (3) or (5) corresponds at the algebraic level to
solving linear systems of the form Ri A RT

i Un+1
i = Fn

i .

We now define, at the algebraic level, the RAS and ASM
algorithms and not JSM since it is seldom used and is more
complex to define. As for the counterpart of the RAS algo-
rithm (5)-(6), we give the following definition

M−1
RAS :=

N∑
i=1

RT
i Di (Ri A RT

i )−1 Ri (9)

so that the iterative RAS algorithm reads:

Un+1 = Un + M−1
RAS rn

where rn := F − A Un.
As for the counterpart of the ASM algorithm (5)-(7), we give
the following definition

M−1
AS M :=

N∑
i=1

RT
i (Ri A RT

i )−1 Ri (10)

so that the iterative ASM algorithm reads:

Un+1 = Un + M−1
AS Mrn .

As is well known, such fixed point methods are out per-
formed by Krylov based iterative solvers such the conjugate
gradient (CG) algorithm of the generalized minimal resid-
ual method (GMRES), see the book by Y. Saad [26] and
references therein. In our context, using these methods
amounts to solve the linear system (8) by a CG algorithm
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preconditioned by the symmetric preconditioner MAS M or
by a GMRES algorithm preconditioned by the unsymmetric
preconditioner MRAS . In both cases, the convergence
properties are related to the spectral properties of the pre-
conditioned operator M−1

AS M or RAS A. The restricted additive
Schwarz method (RAS, see[3]) is the default parallel solver
in the PETSc package. For the additive Schwarz method
(ASM) many theoretical results have been derived, see [29]
and references therein.

3 ADAPTIVE SPECTRAL COARSE SPACE

The domain decomposition methods presented so far were
written for a two subdomain decomposition. Their extension
to an arbitrary number N of subdomains (Ωi)1≤i≤N is only a
matter of notation. It is sufficient in definitions of the previ-
ous section to sum over all subdomains from i = 1 to i = N.
But, when the number of subdomains is large, plateaus ap-
pear in the convergence of Schwarz domain decomposition
methods. This is the case even for a regular problem such
as the Poisson problem (1). The problem comes from the
fact the preconditioner lacks of a global mechanism for ex-
change of information. Preconditioners RAS and ASM de-
fined in the previous sections are called one-level methods.
Data are exchanged only from one subdomain to its direct
neighbors. But the solution in each subdomain depends on
the right handside in all subdomains. Let us call Nd the num-
ber of subdomains in one direction. Then, for instance, the
leftmost domain of Figure 3 needs at least Nd iterations be-
fore knowing something about the value of the right hand-
side f in the rightmost subdomain. The length of the plateau
is thus typically related to the number of subdomains in one
direction and therefore to the notion of scalability met in the
context of high performance computing.

In order to achieve scalability of the domain decomposi-
tion (DD) method, we introduce two-level domain decom-
position methods via a coarse space correction. The precise
motivation and linear algebra setting are given in § 3.1 for a
problem with smooth coefficients. A new approach § 3.2 in-
troduced in [22, 23] is necessary to achieve scalability for ar-
bitrary highly heterogeneous coefficients. A condition num-
ber estimate theorem supports the approach. The method is
tested in § 3.4 on difficult heterogeneous test cases including
channelized medium. In practice, the coarse space seems to
be optimal, see Table 10 in § 3.4.1.

3.1 Need for a two-level method

When the number of subdomains is large, plateaus appear
in the convergence of Schwarz domain decomposition
methods. The remedy will consist in the introduction of a
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Japhet, Nataf and Roux [19]

two-level preconditioner via a coarse space correction.

The problem and its cure are well illustrated in Figure 4
for a domain decomposition into 64 strips. The one level
method has a long plateau in the convergence whereas with
a coarse space correction convergence is quite fast. For in-
stance, in Figure 2 we consider a 2D problem decomposed
into 2 × 2, 4 × 4 and 8 × 8 subdomains. For each domain
decomposition, we have two curves: one with a one-level
method and the second with a coarse grid correction which
is denoted by M2. We see that for the one-level curves, the
plateau has a size proportional to the number of subdomains
in one direction. In two-level methods, a small problem of
size typically the number of subdomains couples all subdo-
mains at each iteration. It is through this mechanism that
scalability can be achieved.

Figure 3

Decomposition into many subdomains

From a condition number point of view, stagnation
corresponds to a few very low eigenvalues in the spectrum
of the preconditioned problem. Using preconditioners
MAS M or MRAS , we can remove the influence of very large
eigenvalues of the coefficient matrix, which correspond to
high frequency modes. Indeed, it has been proved that for
a SPD matrix, the largest eigenvalue of the preconditioned
system by MAS M is bounded by the number of colors
needed to color the overlapping subdomains with different
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colors for adjacent subdomains, see [29] or [26] for in-
stance. But the small eigenvalues still exist and hamper the
convergence. These small eigenvalues correspond to low
frequency modes and represent certain global information.
We need a suitable coarse grid space to efficiently deal with
them.

A classical remedy consists in the introduction of a coarse
grid or coarse space correction that couples all subdomains
at each iteration of the iterative method. This is closely re-
lated to deflation technique classical in linear algebra, see
Nabben and Vuik’s paper [21] and references therein. Sup-
pose we have identified the modes corresponding to the slow
convergence of the iterative method used to solve the linear
system:

Ax = b

with a preconditioner M, in our case a domain decomposi-
tion method. That is, we have some a priori knowledge on
the small eigenvalues of the preconditioned system M−1A.
For a Poisson problem, these slow modes correspond to
constant functions that are in the null space (kernel) of the
Laplace operators. For a homogeneous elasticity problem,
they correspond to the rigid body motions. Let us call Z the
rectangular matrix whose columns correspond to these slow
modes. There are algebraic ways to incorporate these in-
formations to accelerate the domain decomposition method.
We give here the presentation that is classical in domain de-
composition methods. In the case where A is SPD, the start-
ing point is to consider the minimization problem

min
β
‖A(y + Zβ) − b‖A−1 .

It corresponds to finding the best correction to an approxi-
mate solution y by a vector Zβ in the vector space spanned
by the nc columns of Z. This problem is equivalent to

min
β∈Rnc

2(Ay − b,Zβ)2 + (AZβ, AZβ)2

and whose solution is:

β = (ZT AZ)−1ZT (b − Ay) .

Thus, the correction term is:

Zβ = Z (ZT AZ)−1ZT (b − Ay) .

Let R0 := ZT and r = b − Ay be the residual associated to
the approximate solution y, the best correction that belongs
to the vector space spanned by the columns of Z reads:

RT
0 (R0ART

0 )−1R0r .

When using such an approach with an additive Schwarz
method (ASM), it is natural to introduce an additive cor-
rection to the additive Schwarz method:

M−1
AS M,2 := RT

0 (R0ART
0 )−1

R0 +

N∑
i=1

RT
i (RiART

i )−1
Ri (11)

where the Ri’s (1 ≤ i ≤ N) are the restriction operators to
the overlapping subdomains. The structure of the two level
preconditioner M−1

AS M,2 is thus the same than in the one
level method. Compared to the one level Schwarz method
where only local subproblems have to be solved in parallel,
the two-level method adds the solution of a linear system
in a sequential way with the matrix R0ART

0 . This problem
couples all subdomains at each iteration. But this matrix is a
small O(N×N) square matrix and the extra cost is negligible
compared to the gain. Indeed, in Table 1 we display the
iteration counts for a decomposition of the domain in an
increasing number of subdomains. In figure 4, we see that
without a coarse grid correction, the convergence curve of
the one level Schwarz method has a very long plateau that
can be bypassed by a two-level method.

N subdomains Schwarz With coarse grid

4 18 25

8 37 22

16 54 24

32 84 25

64 144 25

TABLE 1

Iteration counts for a Poisson problem on a domain decomposed into
strips. The number of unknowns is proportional to the number of

subdomains (weak scalability).
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Convergence curves with and without a coarse space correction
for a decomposition into 64 strips

We give here a precise definition to Z for a Poisson prob-
lem. This construction was introduced in Nicolaides [24].
We take Z so that it has a domain decomposition structure.
Z is defined by vectors which have local support in the sub-
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domains and so that the constant function 1 belongs to the
vector space spanned by Z. Recall that we have a partition of
unity in the following sense: let Di, 1 ≤ i ≤ N, be matrices

Di : Rdim(Ni) 7−→ Rdim(Ni) (12)

so that we have:
N∑

i=1

RT
i DiRi = Id .

We define Z such that the i-th column of Z is:

Zi := RT
i DiRi1 for 1 ≤ i ≤ N (13)

where 1 is the vector full of ones. The structure of Z is thus
the following:

ZNico =


D1R11 0 · · · 0
... D2R21 · · · 0
...

... · · ·
...

0 0 · · · DNRN1

 . (14)

The results of Figures 4 and Table 1 were obtained using
this method.
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Convergence curves for a domain with two high permeability
layers: long plateaus for one level methods, shorter plateaus for
Nicolaides coarse spaces and no plateau for DtN coarse space

For problems of the type −div(α∇u) = f with smooth co-
efficients α, this coarse space gives good results. But for
highly heterogeneous coefficients, there is still a plateau in
the convergence of the solver. The results in Figure 5 cor-
respond to a domain which has two layers with high values
of α. The computational domain has a stripwise decompo-
sition into 64 subdomains. Two Schwarz methods are tested
with either no coarse space correction, a Nicolaides coarse
space or a spectral coarse space defined in § 3.2 so a to-
tal of six curves. The curves with very long plateaus are
one level Schwarz methods. The curves ZNico (pink curves)
correspond to two level Schwarz methods with a Nicolaides
coarse space, equation (13). The plateau in the conver-
gence is not as large but still exists. With the spectral coarse
space of the next section, we automatically select two modes
per subdomain and get the convergence curves ZD2N (black
curves).

3.2 Spectral coarse space for highly heterogeneous
problems

We now propose a construction of the coarse space that will
be suitable for parallel implementation and efficient for ac-
celerating the convergence for problems with highly hetero-
geneous coefficients of the type

−div(α∇u) = f in Ω ,
B(u) = 0 on ∂Ω

(15)

with α a positive function. We still choose Z such that it has
the form

Z =


W1 0 · · · 0
... W2 · · · 0
...

... · · ·
...

0 0 · · · WN

 , (16)

where N is the number of overlapping subdomains. But
W i is now a rectangular matrix whose columns are based
on the harmonic extensions of the eigenvectors correspond-
ing to small eigenvalues of the Dirichlet-to-Neumann (DtN)
map in each subdomain Ωi. Remark that the sparsity of the
coarse operator E = ZT AZ is a result of the sparsity of Z.
The nonzero components of E correspond to adjacent sub-
domains.

More precisely, let us consider first at the continuous level
the Dirichlet to Neumann map DtNΩi . Let u : Γi 7→ R,
(Γi := ∂Ωi \ ∂Ω)

DtNΩi (u) = α
∂v
∂ni

∣∣∣∣∣
Γi

,

where v satisfiesL(v) := −div(α∇)v = 0, in Ωi,

v = u, on Γi,
(17)

and Γi is the interface boundary. If the subdomain is not a
floating one (i.e. ∂Ωi ∩ ∂Ω , ∅), we use on the part of the
global boundary, the boundary condition from the original
problem B(u) = 0. To construct the coarse grid subspace,
we use the low frequency modes associated with the DtN
operator:

DtNΩi (u) = λα u (18)

with
λ < 1/diam(Ωi) (19)

where diam(Ωi) is the diameter of subdomain Ωi. The ra-
tionale for this choice is that the condition number estimate
of Theorem 3.2 is then similar to the one of Theorem 3.1
for the Poisson problem. Note the term α in the generalized
eigenvalue problem (18).

We first motivate our choice of a coarse space based on
DtN map. We write the original Schwarz method at the con-
tinuous level, where the domain Ω is decomposed in a one-
way partitioning, see Figure 6. The error en

i between the
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Ωi Ωi+1Ωi−1 en
i

en+1
i−1 en+1
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i−1 en+1

i+1

Figure 6

Fast or slow convergence of the Schwarz algorithm.

current iterate at step n of the algorithm and the solution u|Ωi

(en
i := un

i − u|Ωi ) in subdomain Ωi at step n of the algorithm
satisfies:

L(en+1
i ) = 0 in Ωi,

en+1
i = en

j on Ω̄i ∩ ∂Ω j .

On the 1D example sketched in Figure 6, we see that the
rate of convergence of the algorithm is related to the decay
of the harmonic functions en

i in the vicinity of ∂Ωi via the
subdomain boundary condition. Indeed, a small value for
this boundary condition leads to a smaller error in the entire
subdomain thanks to the maximum principle.

Moreover a fast decay for this value corresponds to a large
eigenvalue of the DtN map whereas a slow decay corre-
sponds to small eigenvalues of this map because the DtN
operator is related to the normal derivative at the interface
and the overlap is thin. Thus the small eigenvalues of the
DtN map are responsible for the slow convergence of the al-
gorithm and it is natural to incorporate them in the coarse
grid space.

We now explain why we only keep eigenvectors with
eigenvalues smaller than 1/diam(Ωi) in the coarse space.
We start with the constant coefficient case α = 1. In this
case, the smallest eigenvalue of the DtN map is zero and
it corresponds to the constant function 1. For a shape
regular subdomain, the first positive eigenvalue is of order
1/diam(Ωi), see [12]. Keeping only the constant function
1 in the coarse space leads to good numerical convergence,
see figure 4. In the case of high contrasts in the coefficient
α, the smallest eigenvalue of the DtN map is still zero. But
due to the variation of the coefficients we may possibly
have positive eigenvalues smaller than 1/diam(Ωi). In
order to have a convergence behavior similar to the one
of the constant coefficient case, it is natural to keep all
eigenvectors with eigenvalues smaller than 1/diam(Ωi).

To obtain the discrete form of the DtN map, we consider
the variational form of (17). Let’s define the bilinear form
ai : H1(Ωi) × H1(Ωi)→ R,

ai(w, v) :=
∫

Ωi

α∇w · ∇v.

With a finite element basis {φk}, the coefficient matrix of
a Neumann boundary value problem in domain Ωi is

A(i)
kl =

∫
Ωi

α∇φk · ∇φl.

Let I (resp. Γi) be the set of indices corresponding to the in-
terior (resp. boundary) degrees of freedom and nΓi := #(Γi)
the number of interface degrees of freedom. Note that for
the whole domain Ω, the coefficient matrix is given by

Akl =

∫
Ω

α∇φk · ∇φl.

With block notations, we have

A(i)
II = AII , A(i)

ΓiI
= AΓiI and A(i)

IΓi
= AIΓi .

But the matrix A(i)
ΓiΓi

refers to the matrix prior to assembly
with the neighboring subdomains and thus cannot be simply
extracted from the coefficient matrix A. In problem (17),
we use Dirichlet boundary conditions. Let U ∈ RnΓi and
u :=

∑
k∈Γi

Uk φk. Let v :=
∑

k∈I Vk φk +
∑

l∈Γi
Vl φl be the

finite element approximation of the solution of (17). Let
VI = (Vk)k∈I , we have with obvious notations:

AIIVI + AIΓi U = 0 . (20)

A variational definition of the flux reads∫
Γi

α
∂v
∂n

φk =

∫
Ωi

α∇v · ∇φk

for all φk, k ∈ Γi. So the variational formulation of the eigen-
value problem (18) reads∫

Ωi

α∇v · ∇φk = λ

∫
Γi

tr(α)v φk (21)

for all φk, k ∈ Γi and where tr(α) is the restriction of αΩi to
Γi. Let Mα,Γi be the weighted mass matrix

(Mα,Γi )kl :=
∫

Γi

tr(α)φk φl, ∀k, l ∈ Γi .

The compact form of equation (21) is

A(i)
ΓiΓi

U + AΓiIVI = λMα,Γi U .

With (20), the discrete form of (18) is a generalized eigen-
value problem

(A(i)
ΓiΓi
− AΓiI A

−1
II AIΓi ) U = λMα,Γi U . (22)

Let (Uλ, λ) be an eigenpair, we need its harmonic extension
to the degrees of freedom of domain Ωi, that is the vector:[

−A−1
II AIΓi Uλ

Uλ

]
.

Actually, there is more practical way to directly compute
these eigenpairs. For subdomain Ωi, let

v :=
[

VI

VΓi

]
, A(i) :=

[
AII AIΓi

AΓiI A(i)
ΓiΓi

]
,
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we compute the lowest eigenvalues of the sparse generalized
eigenvalue problem:

A(i) vdtn = λ

[
0 0
0 Mα,Γi

]
vdtn . (23)

This can be done using standard linear algebra library such
as ARPACK.

The step by step procedure on how to construct the
rectangular matrices W i in the coarse space matrix Z, see
(16), is summed up in Algorithm 1. We call this procedure

Algorithm 1 Construction of the spectral coarse space
In parallel for all subdomains 1 ≤ i ≤ N,

1. Compute eigenpairs of (23)
(V i

1, λ
i
1), (V i

2, λ
i
2), . . . , (V i

mi
, λi

mi
) such that

λi
1 ≤ . . . ≤ λ

i
mi
< 1/diam(Ωi) ≤ λi

mi+1
≤ . . .

2. Let Z de defined as in (16) with for each 1 ≤ i ≤ N, W i

the rectangular matrix with mi columns defined by

W i = [DiV i
1| . . . |DiV i

mi
] .

3. Note R0 := ZT and compute the coarse matrix E:

E := R0 A RT
0 .

4. The two-level preconditioner is given by eq. (11):

M−1
AS M,2 := RT

0 E−1R0 +

N∑
i=1

RT
i (RiART

i )−1
Ri

the ZD2N method. We also use ZD2N to denote the coarse
space constructed by this method. Its construction is fully
parallel. Similarly we call ZNico the method of Nicolaides
or the corresponding coarse space. Let us remark that when
the subdomain does not touch the boundary of Ω, the lowest
eigenvalue of the DtN map is zero and the corresponding
eigenvector is a constant vector. Thus, ZNico and ZD2N

coincide. As we shall see in the next section, when a
subdomain has several jumps of the coefficient, taking ZNico

is not efficient and it is necessary to take ZD2N with more
than one mode per subdomain.

This construction has been analyzed in [7]. We first recall
a classical result. Let Z be a “Nicolaides type” coarse space

Z := (RT
i DiRi1)1≤i≤N .

We have, see [29]:

Theorem 3.1 Let MAS M,2 be the two-level additive Schwarz
method with the “Nicolaides” coarse space , we have for

α = 1 the following condition number estimate:

κ(M−1
AS M,2 A) ≤ C(1 +

H
δ

)

where δ is the size of the overlap between the subdomains
and H the subdomain size and C does not depend on the
number of subdomains.

But, for α discontinuous, C would depend on the jumps of
α.
Let Z be the coarse space built via Algorithm 1, we prove
under technical assumptions on α

Theorem 3.2 Under the monotonicity of α in the overlap-
ping regions, we have the following condition number esti-
mate:

κ(M−1
AS M,2 A) ≤ C(1 + max

1≤i≤N

1
δi λ

i
mi+1

)

where δi is the size of the overlap of domain Ωi and C is
independent of the jumps of α and of the number of subdo-
mains.

Note that if α = 1 and we take only one mode per subdo-
main (mi = 1), we have for a regular interface λi

2 ' 1/Hi

(see [12]) and we recover the “classical” estimate. Now
in the general case, if the number of modes associated to
subdomain Ωi mi is chosen so that, λi

mi+1 ≥ 1/Hi, the con-
vergence rate will be analogous to the constant coefficient
case.

3.3 Comparison with a volumic spectral coarse
space

The DtN spectral coarse space makes use of eigenvectors of
the local Dirichlet to Neumann maps. There is thus a clear
relationship with recent works by Galvis and Efendiev [9,
10, 13–15] where the coarse space is based on eigenvalues
of the volumic operator

− div(α∇ui) = λα ui in Ωi . (24)

The drawback of their approach is that the coarse space is
too large. This is easy to see in 1D. In Figure 7, we repre-
sent the function α in a subdomain Ωi. We have many dis-
continuities inside the domain. But, whatever the number of
discontinuities is, our DtN map is a two by two matrix. The
number of eigenvectors of the DtN map is two. Thus, the
coarse space is made of two vectors per subdomain at most.
But, the size of a volumic spectral coarse space is equal to
the number of high heterogeneities islands. This phenom-
ena also holds in the 2D case. In Figure 8 we show perme-
ability field with high heterogeneities islands. For this case,
only 4 eigenvalues of the DtN map are smaller than 1.3e− 4
whereas the other ones are larger than 0.9. Whereas twenty
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ΩiΩi−1 Ωi+1

Figure 7

1D example with many high heterogeneities islands

volumic eigenvalues of eq. (24) are smaller than 3.8e−3 and
the others are larger than 150. Numerical tests show that in
this case only four eigenvalues are enough for having an ef-
ficient coarse space. In the papers by Galvis and Efendiev,
they noted this fact and they have a complex procedure to
get rid of the useless eigenvectors. In our case, the method
adapts automatically to the permeability field. In Figure 9
we show typical DtN and volumic eigenvectors.

IsoValue
-42104.2
21053.6
63158.8
105264
147369
189474
231580
273685
315790
357895
400000
442106
484211
526316
568421
610527
652632
694737
736842
842105

Figure 8

2D example with many high heterogeneities islands

3.4 First Numerical tests

We solve the model problem (15) on the domain Ω = [0, 1]2

using standard continuous, piecewise linear (P1) finite ele-
ments. The diffusion α is a function of x. The boundary con-
dition is u = 0 on the left side boundary and ∂u

∂n = 0 on the re-
mainder. The corresponding discretizations and data struc-
tures were obtained by using the software FreeFem++ [17]
in connection with the METIS partitioner [20]. We will
test the standard additive Schwarz (ASM) and the restricted
additive Schwarz (RAS) preconditioners with and without
coarse space, in particular comparing the new coarse space
based on harmonic extensions of eigenvectors of the lo-
cal DtN operators with the standard coarse space that is

Figure 9

Eigenvectors for: DtN map (left) and the volumic operator
(right) (Freefem++ plots)

the piecewise constant space of Nicolaides [24]. In the ta-
bles and figures, +Nico means the use of the Nicolaides
coarse space (14) and +DtN the use of the spectral coarse
space defined in Algorithm 3.2. We test the method on
(fairly irregular) overlapping partitions into N subdomains.
These overlapping partitions are built by adding layers to
non-overlapping ones obtained, e.g., via graph partitioner
METIS (see Figure 13).

In Table 2, we test robustness w.r.t. the heterogeneities.
The domain Ω contains layers with jumps in the coefficients
ranging from 1 to 106. We have 32 subdomains. The iter-
ation counts depend weakly on the size of the jump in the
coefficients. In Figure 10, we show the permeability field,

Jumps in coeff 1 10 102 103 104 105 106

Iteration counts 15 24 10 10 10 11 11

TABLE 2

Iteration counts vs. jumps in the coefficients

domain decomposition (regular or METIS) into 16 subdo-
mains and the solution corresponding to convergence curves
of Figures 11 and 12. In Table 3, we show how many eigen-
values were selected in the coarse space. In Table 4, we vary
the domain decomposition for the same permeability field.

We now present a selection of difficult test cases in a more
systematic way, with so called inclusions and channels.

We solve two test cases with known difficulties. The dif-
fusion coefficient α is highly heterogeneous and takes val-
ues between 1 and approximately 2 × 106 and contains both
high-permeability inclusions and channels. First of all we
will analyze the performance of the method by increasing
the number of channels and then by increasing the number
of inclusions.

We use a uniform triangulation with 160× 160 nodes and
a partition into 16 (irregular) subdomains (see Figure 13).
Each subdomain is extended by one layer, leading to an
overlap of 2 layers, such that δ j = 2h for all j = 1, . . . ,N.
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IsoValue
-78946.3
39474.7
118422
197369
276317
355264
434211
513159
592106
671053
750001
828948
907895
986842
1.06579e+06
1.14474e+06
1.22368e+06
1.30263e+06
1.38158e+06
1.57895e+06

IsoValue
-0.0079688
0.0039844
0.0119532
0.019922
0.0278908
0.0358596
0.0438284
0.0517972
0.059766
0.0677348
0.0757036
0.0836724
0.0916412
0.09961
0.107579
0.115548
0.123516
0.131485
0.139454
0.159376

Figure 10

Channels and inclusions: 1 ≤ α ≤ 1.5 106. Top left: permeabil-
ity field, top right: the solution, bottom left: regular partition and
permeability field, bottom right: Metis partition and permeabil-
ity field
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Figure 11

RAS convergence for channels and inclusions – Regular parti-
tioning

0 50 100 150
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iteration count

E
rr

o
r

 

 

RAS

P
BNN

 : RAS + Z
Nico

P
BNN

 : RAS + Z
D2N

Figure 12

RAS convergence for channels and inclusions – Regular decom-
position – Metis partitioning

subdomain i nsmeig(i) total number of eigenval.(i)
1 3 155
2 1 109
3 5 175

10 4 174
11 2 71
12 2 128
13 3 166
14 3 127
15 3 188
16 3 106

TABLE 3

Number of small eigenvalues (nsmeig(i)) satisfying criterion (19) for
subdomain i – Metis 4 by 4 decomposition

ASM +Nico +DtN RAS +Nico +DtN
2 × 2 103 110 22 70 70 14

2 × 2 Metis 76 76 22 57 57 18
4 × 4 603 722 26 169 165 15

4 × 4 Metis 483 425 36 148 142 23
8 × 8 461 141 34 205 95 21

8 × 8 Metis 600 542 31 240 196 19

TABLE 4

Convergence results for the test case of Figure 10

Figure 13

Subdomain partitioning into 16 subdomains using METIS.



V Dolean et al. / Two-level domain decomposition methods for highly heterogeneous Darcy equations. Connections with multiscale methods 11

. We use the ASM preconditioner within conjugate gradi-
ents (CG) and the RAS preconditioner within GMRES, and
in each case we stop the iteration process, when the relative
residual is smaller than 10−6.

IsoValue
-47367.4
23685.2
71053.6
118422
165790
213159
260527
307895
355264
402632
450001
497369
544737
592106
639474
686842
734211
781579
828947
947368

IsoValue
-99998.9
50001
150001
250001
350001
450001
550001
650001
750001
850001
950000
1.05e+06
1.15e+06
1.25e+06
1.35e+06
1.45e+06
1.55e+06
1.65e+06
1.75e+06
2e+06

IsoValue
-121052
60527.3
181580
302632
423685
544738
665790
786843
907895
1.02895e+06
1.15e+06
1.27105e+06
1.39211e+06
1.51316e+06
1.63421e+06
1.75526e+06
1.87632e+06
1.99737e+06
2.11842e+06
2.42105e+06

IsoValue
-142104
71053.6
213159
355264
497369
639474
781580
923685
1.06579e+06
1.2079e+06
1.35e+06
1.49211e+06
1.63421e+06
1.77632e+06
1.91842e+06
2.06053e+06
2.20263e+06
2.34474e+06
2.48684e+06
2.84211e+06

Figure 14

Test Problem 1: Successively adding channels.

ASM +Nico. +DtN RAS +Nico. +DtN
0 ch. 529 1000 57 243 245 41
1 ch. 619 520 64 227 228 46
2 ch. > 1000 516 68 226 226 47
3 ch. 585 697 76 212 213 44

TABLE 5

Number of iterations for Test Problem 1 (additive coarse grid correction).

We start with only inclusions and add the channels one
by one as shown in Figure 14 (Test Problem 1). When there
are no channels, α varies between 1 and 106, as indicated
by the colors in Figure 14. With all three channels present,
α varies between 1 and 2.8 × 106. The corresponding con-
vergence results are given in Table 5. Our algorithm per-
forms significantly better. The piecewise constant coarse
space has virtually no effect on the performance of either
ASM or RAS, leading to iteration numbers that differ little
from the results without any coarse grid in all four cases.
Our new coarse space, on the other hand, is fully robust to
the coefficient variation and to the addition of channels, and
it leads to a gain of at least a factor 8 compared to the one-
level method in all cases. The situation is similar, if we use
deflation-based coarse grid correction [21] with the same
coarse spaces (see Table 6). However, the absolute numbers
of iterations are reduced almost by a factor 2 in this case.
Our theory applies equally to this case (see e.g. [16] for de-
tails), but we will not include any further numerical results
with deflation-based coarse grid correction.

Table 7 gives some information on the size of the coarse

ASM +Nico. +DtN RAS +Nico. +DtN
0 ch. 529 656 39 243 231 25
1 ch. 619 538 41 227 215 28
2 ch. >1000 808 47 226 211 27
3 ch. 585 641 47 212 199 28

TABLE 6

Number of iterations for Test Problem 1 (deflation-based coarse grid
correction).

space that we build with our automatic selection strategy:
for each number of channels we give min j m j and max j m j,
as well as the global coarse space size nH =

∑
j m j and the

average number of modes included per subdomain nH/N.
For comparison, we also include information on the total
number nΓ j of eigenmodes of the discrete DtN operator on
each subdomain. We note that adding channels does not
have a big influence on the size of the coarse space; we only
need three additional eigenvectors in the case of three chan-
nels compared to the case of no channels.

Over 16 # eigenval. # local coarse space modes
subdom. on Γ j 0 ch. 1 ch. 2 ch. 3 ch.

Min. 70 1 1 1 1
Max. 191 4 4 4 4

Average 138.8 2.75 2.88 2.94 2.94
Sum 2220 44 46 47 47

TABLE 7

Size of the coarse space for Test Problem 1 with various number of
channels.

Then, using the same domain and the same partition we
successively add inclusions without any channels present as
shown in Figure 15 (Test Problem 2). The results are in
Table 8. Again, the piecewise constant coarse space is not
working at all for this test problem. The DtN-based coarse
space is almost completely robust to an increase in the num-
ber of inclusions and requires again significantly less itera-
tions than the one-level method in all cases. Note that the
subdomain partition (cf. Figure 13) is not aligned with the
inclusions at all (cf. Figure 15). In Table 9 we see that also
in this test problem, the coarse space size grows only very
slowly with the number of inclusions and even in the hardest
case nH is only 53 (cf. the dimension n of Vh,0, and thus of
A is 25600).

3.4.1 Practical optimality of the spectral coarse space

The last series of tests, in Table 10, aims to prove that the
number m j of eigenvectors per subdomain chosen by our au-
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IsoValue
-15788.4
7895.71
23685.1
39474.6
55264
71053.4
86842.8
102632
118422
134211
150000
165790
181579
197369
213158
228948
244737
260526
276316
315789

IsoValue
-26314.7
13158.9
39474.6
65790.3
92106.1
118422
144738
171053
197369
223685
250000
276316
302632
328948
355263
381579
407895
434211
460526
526316

IsoValue
-47367.4
23685.2
71053.6
118422
165790
213159
260527
307895
355264
402632
450001
497369
544737
592106
639474
686842
734211
781579
828947
947368

IsoValue
-57893.7
28948.3
86843
144738
202632
260527
318422
376316
434211
492106
550000
607895
665790
723685
781579
839474
897369
955263
1.01316e+06
1.15789e+06

Figure 15

Test Problem 2: Successively adding inclusions.

# incl. ASM +Nico +DtN RAS +Nico +DtN
2 × 2 108 80 51 100 81 41
3 × 3 194 342 58 154 153 46
5 × 5 529 no cv. 57 243 245 41
6 × 6 835 823 71 266 267 51

TABLE 8

Number of iterations for Test Problem 2 (additive coarse grid correction)
vs. number of inclusions.

Over N = 16 # eigen. # local coarse space modes
subdomains on Γ j 0 ch. 1 ch. 2 ch. 3 ch.
Minimum 70 1 1 1 1
Maximum 191 3 3 4 5
Average 138.8 1.6 2.1 2.8 3.3

Sum 2220 26 33 44 53

TABLE 9

Size of the coarse space for Test Problem 2.

tomatic algorithm is indeed optimal in some sense. For Test
Problem 1 with one channel (see Figure 14), we first reduce
the number of coarse basis functions per subdomain by one,
this has a huge influence on the iteration count. Then we add
one basis function per subdomain and notice that this has
much less effect. This suggests that the selection process we
have designed is indeed the best compromise between en-
riching the coarse grid and solving a reasonably sized coarse
problem.

ASM RAS
No coarse space 619 227
Piecewise constant coarse space 520 228
DtN with max{m j − 1, 1} functions 446 177
DtN with m j functions 64 46
DtN with m j + 1 functions 37 32

TABLE 10

Iteration numbers when reducing or increasing the number m j of coarse
basis functions per subdomain given by the automatic selection strategy.

4 ADAPTIVE COARSE SPACE ON HPC PLATFORMS

Results in this section are based on a related method to the
DtN coarse space method namely the Geneo method. The
principle of this coarse space construction is similar in that
the coarse space is built after solving local eigenvalues prob-
lems. It suffices to change the right hand side in the general-
ized eigenvalue problem (23). The new eigenvalue problem
is of the form

A(i) vdtn = λDi RiART
i Divdtn , (25)

see [28] for more details. The Geneo coarse space is in prac-
tice quite close to the DtN coarse space. Its main advantage
is to work not only for scalar PDEs but also for systems of
PDEs as the elasticity system for instance. When applied to
scalar PDEs, DtN and Geneo coarse spaces are almost iden-
tical and give very similar results. As a result, in order to
have a general purpose code, we focused in HPC develop-
ments and tests on the Geneo method. Results in this section
were obtained on Curie, a Tier-0 system for PRACE2 (Part-
nership for Advanced Computing in Europe) composed of
5040 nodes made of 2 eight-core Intel Sandy Bridge proces-
sors clocked at 2.7 GHz. The interconnect is an InfiniBand
QDR full fat tree. We want here to assess the capability of
our framework to scale:

1. strongly: for a given global mesh, the number of sub-
domains increases while local mesh sizes are kept con-
stant (i.e. local problems get smaller and smaller),
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2. weakly: for a given global mesh, the number of subdo-
mains increases while local mesh sizes are refined (i.e.
local problems have a constant size).

We don’t time the generation of the mesh and partition
of unity. Assembly and factorization of the local stiffness
matrices, resolution of the generalized eigenvalue problems,
construction of the coarse operator and time elapsed for
the convergence of the Krylov method are the important
procedures here. The Krylov method used is the GMRES,
it is stopped when the relative residual error is inferior to
ε = 10−6 in 2D, and 10−8 in 3D. All the following results
where obtained using a LDLT factorization of the local
solvers Aδ

i and the coarse operator E using MUMPS (with
a MPI communicator set to respectively MPI_COMM_SELF
or the communicator created by our library binding master
processes).

First, the system of linear elasticity with highly hetero-
geneous elastic moduli is solved with a minimal geometric
overlap of one mesh element. Its variational formulation
reads:∫

Ω

λ∇ · u∇ · v + 2µε(u)Tε(v) +

∫
Ω

f · v +

∫
∂Ω

g · v (26)

where
– λ and µ are the Lamé parameters such that µ =

E
2(1 + ν)

and λ =
Eν

(1 + ν)(1 − 2ν)
(E being Young’s modulus and

ν Poisson’s ratio). They are chosen to vary between two
set of values, (E1, ν1) = (2 · 1011, 0.25), and (E2, ν2) =

(108, 0.4).

– ε is the linearized strain tensor and f the volumetric forces
(here, we just consider gravity).

Because of the overlap and the duplication of unkowns, in-
creasing the number of subdomains means that the number
of unknowns increases also slightly, even though the num-
ber of mesh elements (triangles or tetrahedra in the case of
FreeFem++) is the same. In 2D, we use piecewise cubic
basis functions on an unstructured global mesh made of 110
million elements, and in 3D, piecewise quadratic basis func-
tions on an unstructured global mesh made of 20 million el-
ements. This yields a symmetric system of roughly 1 billion
unkowns in 2D and 80 million unknowns in 3D. The geom-
etry is a simple [0; 1]d×[0; 10] beam (d = 1 or 2) partitioned
with METIS.

Solving the 2D problem initially on 1 024 processes takes
227 seconds, on 8192 processes, this time is reduced to 31
seconds (quasioptimal speedup). With that many subdo-
mains, the coarse operator E is of size 121 935× 121 935. It
is assembled and factorized in 7 seconds by 12 master pro-
cesses. For the 3D problem, the wall-clock time is initially
373 seconds. At peak performance, near 6 144 processes,
the time is reduced to 35 seconds (superoptimal speedup).
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Figure 16

Linear elasticity test cases. 2D on the left, 3D on the right.
Strong scaling

Then, the coarse operator is of size 92 160 × 92 160 and is
assembled and factorized by 16 master processes in 11 sec-
onds.

Moving on to the weak scaling propreties of our frame-
work, the problem we now solve is a scalar equation of diffu-
sivity with highly heterogeneous coefficients (varying from
1 to 105) on [0; 1]d (d = 2 or 3). Its variational formulation
reads: ∫

Ω

α∇u · ∇v +

∫
Ω

f · v (27)

The targeted number of unkowns per subdomains is kept
constant at approximately 800 thousands in 2D, and 120
thousands in 3D (once again with P3 and P2 finite elements
respectively).
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Figure 17

Diffusion equation test cases. 2D on the left, 3D on the right.
Weak scaling

In 2D, the initial extended system (with the duplication of
unkowns) is made of 800 million unkowns and is solved in
141 seconds. Scaling up to 12 288 processes yields a system
of 10 billion unkowns solved in 172 seconds, hence an effi-
ciency of 141

172 ≈ 82%. In 3D, the initial system is made of
130 million unkowns and is solved in 127 seconds. Scaling
up to 8192 processes yields a system of 1 billion unkowns
solved in 152 seconds, hence an efficiency of 127

152 ≈ 83%.

5 CONNECTIONS WITH MULTISCALE METHODS

Multiscale methods are an active field of research, for fi-
nite element methods see [11] (and references therein) and
for multiscale finite volume methods see for example [18].
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In § 5 we compare them with our two-level spectral coarse
space. In § 5.1, we first recall basic facts on multiscale dis-
cretizations and their difficulties with arbitrary channelized
flows, § 5.1.1.1. Although the goals of multiscale methods
and DD methods are different, they have many related fea-
tures that we compare in § 5.2. In particular, both methods
build coarse basis functions. The superiority of the spectral
coarse space comes the fact that the number and the shape of
basis functions adapts automatically to the heterogeneities
of the medium even for channelized media. This is not al-
ways the case for multiscale methods.

5.1 Presentation of multiscale methods

(xi, yj)

Ki+1/2,j−1/2

Kδ
i+1/2,j−1/2

Ki+1/2,j+1/2

Ki−1/2,j−1/2

Ki−1/2,j+1/2

Figure 18

Fine mesh Ωh, coarse mesh ΩH and a dual coarse cell around
point (xi, y j).

Consider a problem set on a fine grid Ωh (see Figure 18)

Lh(uh) = fh in Ωh (28)

that is too large to be solved. We approximate uh via a coarse
problem set on a coarse mesh ΩH . Defining a multiscale
methods involve three steps:
– pre-computation of a multiscale basis functions;

– global formulation at the coarse level;

– reconstruction of a fine scale solution.
There are of course many variants to deal with these topics
and we don’t try to give a completer review on the subject.
We present here basic materials in order to compare multi-
scale methods with our DtN coarse space. In particular, we
shall see that the DtN approach is more general and system-
atic.

5.1.1 Multiscale basis functions

The preferred and most common technique is to use over-
sampling, see [11]. For simplicity, we start with the original
non oversampling approach.

We consider a structured two-dimensional grid. A coarse
element is typically denoted by K. Let (xi, y j) be a coarse
grid vertex. We recall the construction of the correspond-
ing coarse basis function φH,i, j. For both Multiscal Finite
Element Method (MsFEM) and Multiscale Finite Volume
(MsFV), a standard choice is to solve the fine scale equa-
tion on the four neighboring coarse elements Ki±1/2, j±1/2, see
Figure 18:

Lh(φi±1/2, j±1/2) = 0 in Ki±1/2, j±1/2
φi±1/2, j±1/2 = gi±1/2, j±1/2 on ∂Ki±1/2, j±1/2

(29)
where gi±1/2, j±1/2 is a piecewise affine function such that
gi±1/2, j±1/2(xiy j) = 1 and is zero on the three other vertices
of ∂Ki±1/2, j±1/2. Then, function φH,i, j is defined by taking
restrictions of φi±1/2, j±1/2 to the coarse elements adjacent to
the coarse grid vertex (xi, y j):

φH,i, j(x, y) =

 φi±1/2, j±1/2(x, y) if (x, y) ∈ Ki±1/2, j±1/2 ,

0 otherwise .
(30)

This construction presents unwanted boundary layers ef-
fects. In order to fix this problem, functions φi±1/2, j±1/2 are
computed on a coarse cell Kδ

i±1/2, j±1/2 enlarged with a few
layers of fine elements, see Figure 18. Then a coarse basis
function φH,i, j(x, y) is computed as a linear combination of
the restrictions of functions φi±1/2, j±1/2 to Ki±1/2, j±1/2. This
leads to a non conformal basis. When the coefficients of the
operator Lh are sufficiently smooth, this basis is adequate.
This procedure is called oversampling.

When the coefficients are heterogeneous across these
edges (left picture of Figure 19) the basis functions should
see the heterogeneities. For this purpose, the piecewise lin-
ear Dirichlet boundary conditions are replaced by oscillatory
boundary condition obtained by solving a reduced elliptic
problem along the boundary of the coarse cell. The Dirich-
let data must be in the kernel of the tangential part of the
partial differential operator in eq. (29). An algebraic im-
plementation of this construction was proposed in [25] and
[31].

Note that for finite volume schemes for problems with
high anisotropies, the cell problems (29) can also be mod-
ified by replacing Dirichlet boundary conditions (BC) by
Neumann BC on some parts of ∂Kδ

i±1/2, j±1/2, see § 6.3. of
[18].

5.1.1.1 Multiscale basis functions for channelized
permeability distributions

When the problem has strong heterogeneities, typically,
three situations occur as shown in Figure 19:

1. Isolated heterogeneities

2. One heterogeneous channel
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Figure 19

Left: isolated heterogeneities, Middle: one channel, Right: two
channels

3. Several heterogeneous channels

The first case is well treated by multiscale methods as re-
called above. For the second case, it has been noticed that it
might not be sufficient: “It has been shown that the accuracy
of purely local methods may be low if the permeability field
has structures with very long correlation lengths” quoted
from [18]. This is the case for instance with channels, see
for example middle and right pictures of Figure 19. In order
to fix this problem, iterative constructions of the coarse basis
functions have been proposed, see [5, 6, 8]. Iterations take
place between the coarse scale global flow and the fine scale
local flow. A coarse space is first built with the oversam-
pling method. It is used to obtain a coarse and then a fine
grid solution. Then, the coarse basis functions are corrected
by taking the coarse edge values of this solution as Dirich-
let boundary conditions in equation (29). This procedure
stops with some convergence criterion. To our knowledge,
this technique is not supported by theoretical approximation
results. The last case with several heterogeneous channels
seems to be a concern even for this approach. Indeed, in this
case the good coarse space function depend on the flow con-
ditions: “The introduction of wells may additionally change
global flow significantly and the coarse properties gener-
ated from the two generic global flows might lose accuracy
in some cases. For such problems, the T can be recomputed,
based on the actual well configuration and flow rates, using
a local- global procedure analogous to that applied here.
The overall issue of robustness with respect to global bound-
ary conditions is complex and will be addressed in detail in
a future paper.“ quoted from [5]. The problem comes from
the fact that the number of coarse basis functions attached
to the cell should be at least equal to the number of chan-
nels crossing the cell, see [30]. But, in multiscale methods
even in the more algebraic ones as [31], the number of de-
gree of freedom per aggregate is prescribed in advance. For
a scalar problem, only one coarse basis function is assigned
to a coarse grid vertex. It is thus not possible to cover all
possible flow configurations.

5.1.2 Coarse problem

This step consists in approximating the fine scale solution
uh by defining a suitable coarse space problem whose
solution, denoted by uH , belongs to the space spanned by
the coarse basis functions (φH,i, j)i, j. We consider first finite
element formulation and then finite volume approximations.

For a finite element method, a Galerkin approach is usu-
ally used. For all i, j, let us denote by Zi, j the vector of the
components of φH,i, j on the basis of the fine FEM. We collect
all these vectors in a rectangular matrix Z. Let Ah denote the
matrix associated to the fine FEM so that the matrix form of
the fine FEM reads:

AhUh = Fh (31)

where Uh are the components of the solution uh on the fine
FEM basis. Let us define AH := ZT Ah Z and the coarse
problem by:
Find uH :=

∑
i, j UH,i, j φH,i, j such that

AH UH = ZT Fh .

This way, the coarse approximation UH satisfies a varia-
tional formulation in the coarse space spanned by the coarse
basis functions φH,i, j.
For finite volume methods, the Galerkin approach can be
used as well. But then, conservativity and monotonicity
of the initial finite volume scheme are lost. In order to
recover them, a dual coarse mesh is introduced, see Fig-
ure 18. The coarse grid problem consists in finding uH :=∑

i, j UH,i, j φH,i, j such that conservativity is satisfied on the
boundaries of the dual cells. Typically, a 9-point stencil is
thus obtained and for anisotropic problems the monotonicity
of the finite volume scheme on the fine mesh is lost on the
coarse problem. Then a modified 7-point stencil is sought
that still ensures conservativity, see [18].

5.1.3 Fine scale solution

This step is actually optional since UH contains fine scale
information via the coarse basis functions φH,i, j. In Ms-
FEM, one can further improve the solution by solving local
Dirichlet boundary value problems in each coarse element
Ki±1/2, j±1/2:

Lh(uh) = fh in Ki±1/2, j±1/2 and uh = UH on ∂Ki±1/2, j±1/2 .

Thus UH could be used in principle to solve for instance a
transport equation at the fine level. But the method to com-
pute UH is not conservative which is then a big drawback.
In multiscale finite volume methods, the reconstruction is
based on solving Neumann problems in each coarse cell so
that local conservativity is satisfied. As a result, the fine
scale solution is not continuous at the edges of the coarse
elements.

5.2 Comparison with the DtN two-level Schwarz
method

The foremost difference between multiscale methods and
two-level domain decomposition methods is the goal
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itself. In the first method, one wants to approximate the
solution of the fine scale problem whereas in the second
method one wants to solve the fine scale equations (28)
or equivalently equation (31). In this respect, multiscale
methods are competitors to homogenization or upscaling
methods, see [11]. But in contrast to these methods,
multiscale methods don’t lead to some kind of average PDE
models. They are a framework to provide a cheap way via
a coarse solve to approximate the solution uh of a (too)
large scale system of equations. In this respect, they can be
seen as approximate two level solvers and could be used
as well as preconditioners for Krylov type methods such
as CG, GMRES or BICGSTAB. They are thus naturally
comparable to two level DD methods such as the DtN
approach described above. This has been noticed by several
authors, see [31], [1] or [25] and references therein. There,
the multiscale approach is simply a framework to provide
an adequate coarse space. Thus, we compare the coarse
basis functions constructions and give indications of their
relative efficiency as preconditioners.

Moreover, the involved tools have some similarities.

5.2.1 Oversampling and overlapping

For both methods the fine mesh is decomposed into aggre-
gates of fine elements. But,
– in MsFEM or MsFV, the aggregates consist of some

dozens of elements

– whereas in DDM, subdomains may be quite large
the construction of the coarse problem is essentially parallel.
But,
– in multiscale methods, we have a fine grain parallelism

– in DDM, we have a coarse grain parallelism
Oversampling is very reminiscent of overlapping in DDM.
In both approaches, coarse basis functions are harmonic
functions in overlapping aggregates (subdomains in DDM
and extended coarse cells in oversampling multiscale meth-
ods). In order to use them in a coarse problem, they have
to be cast to functions defined in the whole domain Ωh. In
multiscale methods this was done via procedure which is
somehow “brutal” since the resulting function is not even
continuous on Ωh. In DD methods, the local coarse space
functions are multiplied by a kind of partition of unity (the
local matrices (Di)1≤i≤N , see formula (12)) before the exten-
sion by zero in the whole domain Ωh so that the resulting
function is continuous on Ωh. In [10], the authors use parti-
tion of unity functions in MsFEM methods.

5.2.2 Local and global effects

Coarse basis functions are used to define a coarse problem
and they are harmonic in the aggregates. But,
– in multiscale methods, they mimic finite element basis

function: only one such function per aggregate.

– In the spectral coarse space of § 3.2, the number of coarse
basis functions per aggregate is not prescribed a priori.

Figure 20

Medium with channels

In multiscale methods, the number of degree of freedom
per aggregate is prescribed in advance. For a scalar prob-
lem, only one coarse basis function is assigned to a coarse
grid vertex. It has been explained in § 5.1.1.1 that even for
sophisticated multiscale methods, it might not be enough for
channelized media with changing flow conditions. Whereas
the spectral coarse space construction works well for arbi-
trary channels configuration, see Figure 20, as we have seen
in § 3.4.

6 CONCLUSION AND PROSPECTS

After having introduced Schwarz domain decomposition
methods, we have presented the spectral coarse space in-
troduced in [23] and later analyzed in [7]. It is practically
optimal in the sense that a larger coarse space does not bring
much improvement while a smaller one has a poor perfor-
mance, see § 3.4.1. Moreover, the method adapts automat-
ically to the heterogeneities of the problem. If necessary,
more than one coarse basis function is allowed per aggre-
gate. This construction is supported by a theoretical condi-
tion number estimate independent of the heterogeneities of
the physical problem, see Theorem 3.2. In coarse spaces
built using multiscale methods, such a theorem cannot hold
since only one degree of freedom is allowed per aggregate,
see § 5.2. This is why these methods have problems with
channelized permeability distributions. A cure proposed
[10] is to use a suitable spectral coarse space as a basis for
a MsFEM method. Our DtN coarse space could be used in
MsFEM methods in the same manner.

The spectral coarse space was developed, tested and ana-
lyzed in the finite element framework. In reservoir or basin
simulations, finite volume discretizations are usually pre-
ferred to finite element discretizations. The extension of the
spectral coarse space of § 3 to a finite volume discretization
is thus mandatory for its use in subsurface modeling. As
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explained in § 3.2, the rationale behind this coarse space is
written in terms of the original model i.e. in terms of par-
tial differential equations. Thus the basis of the method does
not depend on the discretization scheme. Therefore the def-
inition and implementation of the spectral coarse space in a
finite volume discretization will demand some work but can
definitely be done. It would improve the method introduced
in [31] by selecting in a sure (see Theorem 3.2) and optimal
(see § 3.4.1) manner more efficient coarse spaces when the
channelized character of the permeability distribution makes
it necessary.
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