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G. Juzeliūnas†, J. Ruseckas† and P. Öhberg‡
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Abstract. We study the influence of two resonant laser beams (to be referred to

as the control and probe beams) on the centre of mass motion of ultra-cold atoms

characterised by three energy levels of the Λ-type. The laser beams being in the

Electromagnetically Induced Transparency (EIT) configuration drive the atoms to their

dark states. We impose the adiabatic approximation and obtain an effective equation

of motion for the dark state atoms. The equation contains a vector potential type

interaction as well as an effective trapping potential. We concentrate on the situation

where the control and probe beams are co-propagating and have Orbital Angular

Momenta (OAM). The effective magnetic field is then oriented along the propagation

direction of the control and probe beams. Its spatial profile can be shaped by choosing

proper laser beams. We analyse several situations where the effective magnetic field

exhibits a radial dependence. In particular we study effective magnetic fields induced

by Bessel beams, and demonstrate how to generate a constant effective magnetic field

for a ring geometry of the atomic trap. We also discuss a possibility to create an

effective field of a magnetic monopole.
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1. Introduction

Recent experimental advances in trapping and cooling atoms have made it possible to

produce atomic Bose-Einstein Condensates (BECs) [1–4] and degenerate Fermi gases

[5–7] at temperatures in the microkelvin range. The atomic BECs and degenerate

Fermi gases are the systems where an atomic physicist often meets physical phenomena

encountered in condensed matter physics. For instance, atoms in optical lattices are

often studied using the Hubbard model [8] familiar from solid state physics.

Ultra-cold atomic gases have turned out to be a remarkably good medium for

studying a wide range of physical phenomena. This is mainly due to the fact that it

is relatively easy to experimentally manipulate parameters of the system, such as the

strength of interaction between the atoms, properties of a lattice in which the atoms

are trapped, the geometry of an external trap, etc. Such a freedom of manipulating

parameters is usually not possible in other systems known from condensed matter or

solid state physics.

Atoms forming quantum gases are electrically neutral particles and there is no

vector potential type coupling of the atoms with a magnetic field. Therefore, a direct

analogy between the magnetic properties of degenerate atomic gases and solid state

phenomena is not necessarily straightforward. It is possible to produce an effective

magnetic field in a cloud of electrically neutral atoms by rotating the system such that

the vector potential will appear in the rotating frame of reference [9–11]. This would

correspond to a situation where the atoms feel a uniform magnetic field. Yet stirring an

ultracold cloud of atoms in a controlled manner is a rather demanding task.

There have also been suggestions to take advantage of a discrete periodic structure

of an optical lattice to introduce assymetric atomic transitions between the lattice

sites [12–15]. Using this approach one can induce a nonvanishing phase for the atoms

moving along a closed path on the lattice, i.e. one can simulate a magnetic flux [12–15].

However such a way of creating the effective magnetic field is inapplicable to an atomic

gas that does not constitute a lattice.

A significant experimental advantage would be gained if a more direct way could be

used to induce an effective magnetic field. In previous papers [16,17], we have shown how

this can be done using two light beams in an Electromagnetically Induced Transparency

(EIT) configuration. Here we present a more detailed analysis of the phenomenon for

various spatial distributions of the laser fields. We demonstrate that if at least one

of these beams contains an Orbital Angular Momentum (OAM), an effective magnetic

field appears, which acts on the electrically neutral atoms. In other words, the coupling

between the light and the atoms will provide an effective vector potential in the atomic

equations of motion. Compared to the rotating atomic gas, where only a constant

effective magnetic field is created [9–11], using optical means will be advantageous since

the effective magnetic field can now be shaped by choosing proper control and probe

beams. The appearance of the effective vector potential is a manifestation of the Berry

connection which is encountered in many different areas of physics [18–20].
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The outline of the paper is as follows. In section 2 we define a system of three

level atoms in the Λ-configuration interacting with the control and probe beams. We

allow the two beams to have orbital angular momenta along the propagation axis z. In

section 3 we present a general treatment of the adiabatic motion of multilevel atoms

and apply it to derive the equation of motion for the atom driven to the dark state

by the control and probe beams of light. The resulting effective equation of motion

contains the effective trapping and vector potentials. In sections 4 and 5 we analyse the

effective magnetic field and effective trapping potential in the case where at least one

of the laser beams contains an orbital angular momentum. We show that the spatial

profile of the effective magnetic field can be controlled by applying proper control and

probe beams. We analyse several situations where the effective magnetic field exhibits

a radial dependence. In particular we study effective magnetic fields induced by Bessel

beams, and demonstrate how to generate a constant effective magnetic field for ring

geometry of the atomic trap. We also discuss a possibility to create an effective field of

a magnetic monopole. Finally in the concluding section 6 we summarise the findings.

2. Formulation

2.1. The atomic system

We shall consider an ensemble of atoms characterised by two hyper-fine ground levels

1 and 2, as well as an electronic excited level 3. The atoms interact with two resonant

laser beams in the EIT configuration (see figure 1). The first beam (to be referred to as

the control beam) drives the transition |2〉 → |3〉, whereas the second beam (the probe

beam) is coupled with the transition |1〉 → |3〉, as shown in figure 1a. The control laser

has a frequency ωc, a wave-vector kc, and a Rabi frequency Ωc. The probe field, on the

other hand, is characterised by a central frequency ωp = ckp, a wave-vector kp, and a

Rabi frequency Ωp. Of special interest is the case where the probe and control beams

can carry OAM along the propagation axis z. In that case, the spatial distribution of

the beams is given by [21, 22]

Ωp = Ω(0)
p ei(kpz+lpφ) (1)

and

Ωc = Ω(0)
c ei(kcz+lcφ), (2)

where Ω
(0)
p and Ω

(0)
c are slowly varying amplitudes for the probe and control fields,

~ℓp and ~ℓc are the corresponding orbital angular momenta per photon along the

propagation axis z, and φ is the azimuthal angle.

2.2. Hamiltonian for the electronic degrees of freedom of an atom

Adopting the rotating wave approximation, the Hamiltonian for the electronic degrees

of freedom of an atom interacting with the control and probe fields is in the rotating
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Figure 1. a) The level scheme for the Λ type atoms interacting with the resonant

probe beam Ωp and control beam Ωc. b) Schematic representation of the experimental

setup with the two light beams incident on the cloud of atoms. The probe field is of

the form Ωp ∼ eiℓφ, where each probe photon carry an orbital angular momentum ~ℓ

along the propagation axis z.

frame:

Ĥ0(r) = ǫ21|2〉〈2| + ǫ31|3〉〈3| − ~(Ωp|3〉〈1|+ Ωc|3〉〈2| + H.c.) (3)

where ǫ21 = ~(ω2−ω1+ωc−ωp) and ǫ31 = ~(ω3−ω1−ωp) are, respectively, the energies of

the detuning from the two- and single-photon resonances, with ~ωj being the electronic

energy of the atomic level j. Note that the spatial dependence of the Hamiltonian

Ĥ0(r) emerges through the spatial dependence of the Rabi frequencies Ωp ≡ Ωp (r) and

Ωc ≡ Ωc (r).

In what follows the control and probe fields are assumed to be tuned to the two-

photon resonance: ǫ21 = 0. The remaining two photon mismatch (if any) can be
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accommodated within the trapping potential

V̂ (r) = V1(r)|1〉〈1|+ V2(r)|2〉〈2|+ V3(r)|3〉〈3|. (4)

where Vj(r) is the trapping potential for an atom in the electronic state j, with

j = 1, 2, 3. Neglecting the two-photon detuning, the Hamiltonian (3) has the eigenstate

|D〉 ≡ |D(r)〉 =
1

√

1 + |ζ |2
(|1〉 − ζ |2〉) (5)

characterised by the zero eigenenergy: Ĥ0(r)|D〉 = 0. Here

ζ =
Ωp

Ωc

(6)

is the ratio of the amplitudes of the probe and control fields.

The state |D〉 is known as the dark state [23–26]. We shall be interested in a

situation where the atoms are driven to their dark states. If an atom is in the dark

state |D〉, the resonant control and probe beams induce the absorption paths |2〉 → |3〉
and |1〉 → |3〉 which interfere destructively, resulting in the Electromagnetically Induced

Transparency [23–26]. In such a situation, the transitions to the upper atomic level 3

are suppressed, so the atomic level 3 is weakly populated. This justifies neglection of

losses due to spontaneous emission by excited atoms in the Hamiltonian (3).

3. Equations of the atomic motion

3.1. Translational motion for a multilevel atom

Let us now consider translational motion of an atom taking into account its internal

degrees of freedom. The full atomic Hamiltonian is given by

Ĥ =
p̂2

2M
+ Ĥ0(r) + V̂ (r), (7)

where p̂ ≡ −i~∇ is the momentum operator for the atom positioned at r, and M is

the atomic mass. The Hamiltonian for the electronic degrees of freedom Ĥ0(r) and the

external trapping potential V̂ (r) featured in equation (7) are defined by equations (3)

and (4).

For fixed r the electronic Hamiltonian Ĥ0(r) can be diagonalised to give a set of

eigenvectors |X(r)〉 and eigenvalues εX(r), where X = D, +,−. The state with X = D

is the dark atomic state given by equation (5) and characterised by zero eigenenergy:

εD(r) = 0. If the single and two photon detuning is zero, the remaining eigenstates are:

| ± (r)〉 =
1√
2
(|B〉 ± |3〉), (8)

corresponding eigenenergies being

ε±(r) = ±Ω. (9)

Here Ω =
√

Ω2
p + Ω2

c is the total Rabi frequency and

|B〉 ≡ |B(r)〉 =
1

√

1 + |ζ |2
(ζ∗|1〉 + |2〉) (10)
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is the atomic bright state.

The full atomic wave function Φ can then be expanded as:

|Φ(r)〉 =
∑

X=D,+,−

ΨX(r)|X(r)〉, (11)

where a composite wavefunction ΨX(r) describes the translational motion of an atom

in the electronic state X, with X = D, +,−.

Substituting equation (11) into the Schrödinger equation i~∂Φ/∂t = ĤΦ, one

arrives at a set of coupled equations for the components ΨX . Introducing the column

Ψ = (ΨD, Ψ+, Ψ−)T , it is convenient to represent these equations in a matrix form:

i~
∂

∂t
Ψ =

[

1

2M
(−i~∇− A)2 + U

]

Ψ, (12)

where A and U are the 3 × 3 matrices with the following elements:

AX,X′ = i~〈X|∇X ′〉, (13)

UX,X′ = εX(r)δX,X′ + 〈X|V̂ (r)|X ′〉, (14)

i.e. the matrix U includes contributions from both the internal atomic energies and also

the external trapping potential.

Since the atomic internal motion is much faster than the external (translational)

one, the difference in the atomic energies UX,X − UX′,X′ is normally much larger than

the energies of non-adiabatic coupling between these states. In such a situation,

the translational motion of atoms in different internal levels can be considered to be

independent. This leads to the adiabatic approximation.

3.2. Effective equation of motion for a dark-state atom

Specifically, let us suppose that the atomic dark state |D〉 is well separated from the

remaining atomic states |±〉. Neglecting transitions to the latter states, equation (12)

provides an effective equation for the translational motion of an atom in the electronic

dark state |D〉:
i~∂ΨD/∂t = ĤeffΨD (15)

where the effective Hamiltonian

Ĥeff =
1

2M
(−i~∇− Aeff)2 + Veff (16)

is characterised by the effective vector and trapping potentials:

Aeff ≡ AD,D = i~〈D|∇D〉 (17)

and

Veff = U + φ, (18)
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with U ≡ UD,D being defined by the above equation (14). An additional scalar potential

φ appears due to the exclusion of the electronic states with X = ± in the effective

equation of motion (15). In particular, we have

φ =
1

2M

∑

X=±

AD,XAX,D

=
~

2

2M
(〈∇D|∇D〉+ 〈D|∇D〉〈D|∇D〉) (19)

and

U =
V1(r) + |ζ |2V2(r)

1 + |ζ |2 . (20)

Since V1(r) and V2(r) are the trapping potentials for an atom in the electronic states

1 and 2 respectively, U represents the external trapping potential for the atom in the

dark state.

In this way, the full effective trapping potential Veff is composed of the external

trapping potential U and the geometric scalar potential φ. The former U is determined

by the shape of the trapping potentials V1(r) and V2(r), as well as the intensity ratio |ζ |2.
The latter geometric potential φ is determined exclusively by the spatial dependence of

the dark state |D〉 emerging through the spatial dependence of the ratio between the

Rabi frequencies ζ = Ωp/Ωc. Note that the effective vector potential Aeff (known as a

Berry connection [18]) has a geometric nature as well, because it also originates from

the spatial dependence of the atomic dark state |D〉 ≡ |D(r)〉.

3.3. Adiabatic condition

The energy difference between the dark state and the remaining atomic states | ± (r)〉
is characterised by the total Rabi frequency Ω =

√

Ω2
p + Ω2

c . Assuming that the control

and probe fields are tuned to the one- and two-photon resonances (ǫ31, ǫ21 ≪ ~Ω), the

adiabatic approach holds if the non-diagonal matrix elements in equation (12) are much

smaller than the total Rabi frequency Ω. This leads to the following condition

F ≪ Ω (21)

where the velocity-dependent term

F =
1

1 + |ζ |2 |∇ζ · v| (22)

reflects the two-photon Doppler detuning [17]. Note that the condition (21) does not

accommodate effects due to the decay of the excited atoms. The dissipation effects can

be included replacing the energy of the one-photon detuning ǫ31 by ǫ31 − i~γ3, where

γ3 is the excited-state decay rate. In such a situation, the dark state can be shown to

acquire a finite lifetime

τD ∼ γ−1
3 Ω2/F 2 (23)

which should be large compared to other characteristic time scales of the system.
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The condition (21) implies that the inverse Rabi frequency Ω−1 should be smaller

than the time an atom travels a characteristic length over which the amplitude or the

phase of the ratio ζ = Ωp/Ωc changes considerably. The latter length exceeds the optical

wavelength, and the Rabi frequency can be of the order of 107 to 108 s−1 [27]. Therefore

the adiabatic condition (21) should hold for atomic velocities up to tens of meters per

second, i.e. up to extremely large velocities in the context of ultra-cold atomic gases.

The allowed atomic velocities become lower if the spontaneous decay of the excited

atoms is taken into account. The atomic dark state accquires then a finite lifetime τD

equal to γ−1
3 times the ratio Ω2/F 2, see Eq. (23). The atomic decay rate γ3 is typically

of the order 107 s−1. Therefore if the atomic velocities are of the order of a centimeter

per second (a typical speed of sound in an atomic BEC), the atoms should survive in

their dark states up to a few seconds. This is comparable to a typical lifetime of an

atomic BEC.

4. Analysis of the effective vector and trapping potentials

Substituting the expression (5) for the dark state into equation (17) for the effective

vector potential, the latter takes the form:

Aeff = i~
ζ∗∇ζ − ζ∇ζ∗

2(1 + |ζ |2) . (24)

The effective magnetic field reads then:

Beff = ∇× Aeff = i~
∇ζ∗ ×∇ζ

(1 + |ζ |2)2
(25)

and the geometric scalar potential is

φ =
~

2

2M

∇ζ∗∇ζ

(1 + |ζ |2)2
. (26)

4.1. Separation into the amplitude and phase

Let us express the ratio of Rabi frequencies ζ in terms of the amplitude and phase:

ζ =
Ωp

Ωc

= |ζ |eiS. (27)

The effective vector potential, the effective magnetic field, and the effective scalar

potential then read

Aeff = −~
|ζ |2

1 + |ζ |2∇S, (28)

Beff = ~
∇S ×∇|ζ |2
(1 + |ζ |2)2

, (29)

φ =
~

2

2M

(∇|ζ |)2 + |ζ |2(∇S)2

(1 + |ζ |2)2
. (30)
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4.2. Representation in terms of the mixing angle

It is convenient to introduce the mixing angle α via the following relationships:

sin α =
1

√

1 + |ζ |2
, cos α =

|ζ |
√

1 + |ζ |2
. (31)

If the intensity ratio |ζ |2 is much larger than the unity, the mixing angle is α ≈ 1/ζ . On

the other hand, if |ζ |2 ≪ 1, we have α ≈ π/2 − |ζ |.
The dark state can now be represented as

|D〉 = sin α|1〉 − cos α eiS|2〉. (32)

The effective vector and scalar potentials can also be rewritten in terms of the mixing

angle:

Aeff = −~ cos2 α∇S = −~

2
(1 + cos(2α))∇S (33)

and

φ =
~

2

2M

[

(

1

2
sin(2α)∇S

)2

+ (∇α)2

]

=
~

2

8M

[

(

1 − cos2(2α)
)

(∇S)2 +
(∇ cos(2α))2

1 − cos2(2α)

]

, (34)

i.e. both potentials can be expressed through the quantity

cos(2α) =
|ζ |2 − 1

|ζ |2 + 1
. (35)

The same applies to the effective magnetic field:

Beff = ∇× Aeff =
~

2
∇S ×∇ cos(2α). (36)

4.3. Co-propagating control and probe beams with OAM

If the co-propagating probe and control fields carry OAM, their amplitudes Ωp and Ωc

are given by equations (1)–(2). The phase of the ratio ζ = Ωp/Ωc then reads

S = lφ, (37)

where l = lp − lc. Note that although both the control and probe fields are generally

allowed to have non-zero OAM by equations (1)–(2), it is desirable for the OAM to be

zero for one of these beams. In fact, if both lp and lc were non-zero, the amplitudes

Ωp and Ωc should simultaneously go to zero along the z-axis. In such a situation, the

total Rabi frequency Ω =
√

Ω2
p + Ω2

c would also vanish, leading to the violation of the

adiabatic condition (21) along the z-axis.

Substituting equation (37) into equations (33), (34) and (36), one has

Aeff = −~ cos2 α
l

ρ
eϕ, (38)

φ =
~

2

2M

[

(

1

2
sin(2α)

l

ρ

)2

+ (∇α)2

]

, (39)
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and

Beff =
~

2

l

ρ
eϕ ×∇ cos(2α) (40)

where eϕ is the unit vector in the azimuthal direction, and ρ is the cylindrical radius.

In what follows the intensity ratio |ζ |2 is considered to depend on the cylindrical

radius ρ only (unless stated otherwise). In that case the effective scalar potential and

magnetic field reduce to

φ =
~

2

2M

[

(

1

2
sin(2α)

l

ρ

)2

+

(

∂α

∂ρ

)2
]

(41)

and

Beff = −~

2

l

ρ

∂

∂ρ
cos(2α)ez. (42)

In such a situation the effective magnetic field is directed along the z-axis.

5. Specific cases

5.1. Polynomial case

If we take

|ζ | = aρ + bρ2, (43)

then

cos(2α) =
(aρ + bρ2)2 − 1

(aρ + bρ2)2 + 1
.

Consequently one has:

Aeff = −~l
ρ(a + bρ)2

1 + ρ2(a + bρ)2
eϕ, (44)

φ =
~

2

2M

(l2 + 1)a2 + 2(l2 + 2)abρ + (l2 + 4)b2ρ2

(1 + ρ2(a + bρ)2)2
. (45)

In this case the effective magnetic field

Beff = −~l
2(a + bρ)(a + 2bρ)

(1 + ρ2(a + bρ)2)2
ez (46)

exhibits a radial dependence.

5.2. Bessel beam

Suppose the probe field represents a Bessel beam and the Rabi frequency of the control

beam is almost constant within an atomic cloud. In such a case we have

ζ = bJl(aρ)eilϕ (47)
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where b is a dimensionless constant determining the relative strength of the probe field.

The effective vector and scalar potentials are then:

Aeff = −~
b2Jl(aρ)2

1 + b2Jl(aρ)2

l

ρ
eϕ, (48)

φ =
~

2b2

2M

4l2Jl(aρ)2 + a2ρ2(Jl−1(aρ) − Jl+1(aρ))2

4ρ2(1 + b2Jl(aρ)2)2
. (49)

In this case the effective magnetic field

Beff = −~
ab2l

ρ

Jl(aρ)(Jl−1(aρ) − Jl+1(aρ))

(1 + b2Jl(aρ)2)2
ez (50)

also exhibits a radial dependence. Furthermore, the strength of the effective magnetic

field alternates its sign, i.e. the regions with the effective magnetic field aligned along z-

axis are replaced by the regions in which the effective magnetic field is directed opposite

to the z-axis and vice versa.

Next we shall examine situations where the effective magnetic field is constant.

5.3. Constant effective magnetic field for ring geometry

In the previous paper [17] we have analysed a constant effective field in the case where

the atomic motion is restricted to distances where ρ < ρmax. This can be achieved if the

intensity ratio is:

|ζ |2 =
(ρ/ρmax)

2

1 − (ρ/ρmax)
2 , (51)

so that the effective vector potential, equation (38), takes the form

Aeff = −~lρρ−2
maxeφ. (52)

This yields a constant effective magnetic field

Beff = −2~lρ−2
maxez, (53)

with the corresponding cyclotron frequency ωc = ~2l/Mρ2
max and the magnetic length

ℓB =
√

~/Mωc = ρmax/
√

2l.

Let us now consider a situation where the atomic motion is restricted additionally

from below, i.e. ρ > ρmin. In such a case the constant effective magnetic field is obtained

provided

|ζ |2 =
ρ2 − ρ2

min

ρ2
max − ρ2

. (54)

The effective vector potential then takes the form

Aeff = −~
ρ2 − ρ2

min

ρ2
max − ρ2

min

l

ρ
eϕ, (55)

giving the following magnetic field strength:

Beff = − 2~l

ρ2
max − ρ2

min

ez. (56)



Effective magnetic fields in atomic gases 12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1  2  3  4  5  6  7  8  9  10

φ
(ρ

)

ρ/ρmin

Figure 2. Geometric scalar potential φ for the case of constant effective magnetic

field Beff in the ring geometry. The constants are M = 1, ~ = 1, l = 10, ρmin = 1, and

ρmax = 10.

For ρ → ρmin and ρ → ρmax, the intensity ratio |ζ |2 goes respectively to zero and infinity,

so the equations (54)-(56) have a meaning only within a disc where ρmin < ρ < ρmax.

In other words, equation (54) can model an actual intensity distribution of the control

and probe beams only within this region. The effective magnetic flux over the disc is

given by Φ = 2π~l. Since the winding number l of light beams can currently be as large

as several hundreds [28, 29], it is possible to induce a substantial flux Φ in the atomic

cloud. This might enable us to study phenomena related to filled Landau levels with a

large number of atoms in the quantum gas.

Finally the scalar potential is given by

φ =
~

2

2M

(

l2

ρ2

(ρ2
max − ρ2)(ρ2 − ρ2

min)

(ρ2
max − ρ2

min)
2

+
ρ2

(ρ2
max − ρ2)(ρ2 − ρ2

min)

)

. (57)

The potential φ has singuliarities both at ρ = ρmin and ρ = ρmax, as illustrated in

figure 2. This might provide a natural trapping container confining the atoms within

the ring.

5.4. Effective magnetic field of a magnetic monopole

The method for creating an effective magnetic field allows us to consider various exotic

cases. An interesting possibility is to create an effective field of a magnetic monopole.

Such an idea was proposed in [30].

A possible expression for the vector potential of the monopole field has the form

A ∼ 1 − cos θ

r sin θ
eϕ,
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where r, θ and ϕ are the spherical coordinates. Such a potential has a singularity at

the string where θ = 0. Unlike in [30] we do not attempt to eliminate this singularity,

since the elimination does not make the field esier to create.

In order to get an effective vector potential of a magnetic monopole the intensity

ratio should obey the condition

|ζ |2 =
1 − cos θ

1 + cos θ
. (58)

where we are no longer making the paraxial approximation. In such a situation

cos(2α) = − cos θ = −z/r.

Consequently the effective vector potential, the effective magnetic field and the scalar

potential are

Aeff = −~l

2

1 − cos θ

r sin θ
eϕ, (59)

Beff = − ~l

2r2
er, (60)

φ =
~

2

2M

l2 + 1

4r2
. (61)

The magnetic charge of the effective monopole is now proportional to the difference

of the orbital angular momentum of the light beams ~l ≡ ~(lp − lc). On the other

hand, the emerging scalar potential φ is repulsive and spherically symmetrical, and is

characterised by the r−2 behaviour.

In order to satisfy the condition (58) the Rabi frequencies should obey the following:

|Ωp|2 = f(r)(1 − cos θ), (62)

|Ωc|2 = f(r)(1 + cos θ) (63)

where f(r) is an arbitrary function of the coordinates. For a light beam with an OAM,

its intensity is known to be zero along the propagation axis z [21, 22]. Therefore if the

probe beam has an OAM, the function f(r) should be zero for cos θ = −1, i.e. along the

negative part of z-axis. Under this condition the control beam should also be zero along

the negative part of z-axis, so the adiabatic condition (21) is violated there. Similar

conclusions can be reached if the control beam has OAM.

In this way the effective field of a magnetic monopole cannot be created in the whole

space, i.e. the effective field differs from the field of a monopole in the vicinity of the

negative (or positive) part of the z-axis. This conclusion is valid even if the singularity

of the potential is eliminated [30], since the intensities of the beams remain of the same

form using such a procedure. It should be noted that a posibilitiy of creating the field

of a magnetic monopole can be improved applying a more complex scheme where three

laser beams act resonantly on four-level atoms in the tripod configuration [31].

6. Conclusions

In this paper we have studied the effects of using probe and control beams with orbital

angular momentum in an EIT configuration. The nontrivial phase and intensity of
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the incident light beams gives rise to effective magnetic vector potentials and trapping

potentials for the atoms. The theory holds for both fermions and bosons where the

effects from collisional interactions can be readily included [17]. Recent advances in

spatial light modulator technology enables us to consider rather exotic light beams [32].

Indeed one of the advantages of using light to create the effective vector potential,

and consequently an effective magnetic field, is the freedom to choose almost any

spatially dependent effective magnetic field, as long as the corresponding light fields

obey Maxwell’s equations. This means we have complete freedom to choose the effective

magnetic field in a two-dimensional geometry, but we can also control the effective field in

three dimensions. Shaping light beams in three dimensions is more difficult but certainly

not impossible [33]. We have analysed different cases where the radial dependence of

the magnetic fields was exploited. In particular the homogenous magnetic field in a ring

geometry and magnetic fields using Bessel beams were studied.

An effective magnetic field acting on an atomic quantum gas offers some truly

remarkable possibilities. We are now in a position to study magnetic effects encountered

in solid state situations with electrons. The effective magnetic field can also be applied

to investigate other intriguing phenomena which intrinsically depend on the magnetic

field. For instance, the properties of a gas described by a single completely filled Landau

level can now be explored using a cold gas of electrically neutral atomic fermions [34]. In

addition, if the collisional interaction between the atoms is taken into account, we can

study the magnetic properties of a superfluid atomic Fermi gas [35–38] where insight

into the BCS-BEC crossover regime could be gained.
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