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as hydrodynamically equivalent shorter channel sections. 
In addition, these small micro-elements reach steady state 
much quicker than a full simulation of the network does. 
We test our multiscale method on several steady, isother-
mal network flow cases and show that it converges quickly 
(within three iterations) to good agreement with full molec-
ular simulations of the same cases.
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1 Introduction

There are a number of engineering applications of fluid 
dynamics that require modelling with nanoscale or micro-
scale resolution, for example, lab-on-a-chip devices (Jiang 
et al. 2011), nanotube membranes for seawater desalination 
(Mattia and Gogotsi 2008) or air purification (Mantzalis 
et al. 2011), and miniaturised heat exchangers for cooling 
electronic circuits (Yarin et al. 2009). In any simulation, the 
smallest dimension of a problem will determine the reso-
lution required, and these applications are all multiscale: 
the length scale in one direction (usually the streamwise 
direction) is orders of magnitude greater than in the oth-
ers. For example, the length of a nanotube in a desalina-
tion membrane (∼2 mm) can be far larger than its diameter  
(∼2 nm). This makes most micro solvers, such as molec-
ular dynamics (MD), very computationally inefficient 
because the computation time grows dramatically with the 
size of the domain. The use of continuum fluid hydrody-
namics, such as the Navier–Stokes–Fourier (NSF) equa-
tions, is also inadequate for these types of problems. While 
the NSF equations have been shown to still be legitimate 
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for Newtonian flows at the nanoscale, they break down 
for non-Newtonian flows (with unknown constitutive rela-
tions), flows dominated by surface effects (e.g. molecular 
layering or large slip), or flows that exhibit thermodynamic 
non-equilibrium due to high gradient processes in the bulk 
fluid. A number of so-called hybrid multiscale methods 
have therefore been developed that aim to combine the best 
features of both micro and macroscale solvers: these strike 
a compromise between the accuracy of MD (in places 
where NSF is invalid) and the computational speed of NSF 
(where MD would be too computationally expensive).

The three main types of hybrid method are domain 
decomposition (O’Connell and Thompson 1995; Hadjicon-
stantinou and Patera 1997; Wagner et al. 2002; Delgado-
Buscalioni and Coveney 2003a; Nie et al. 2004), the heter-
ogeneous multiscale method (Ren and E 2005; Yasuda and 
Yamamoto 2008; E et al. 2009; Asproulis et al. 2012; Alex-
iadis et al. 2013), and the internal-flow multiscale method 
(Borg et al. 2013a, b; Patronis et al. 2013). In domain 
decomposition (DD), the flow domain is spatially divided 
so that there are micro solvers at the surfaces and neigh-
bouring fluid regions, while a macro solver is applied for 
the bulk fluid (see Fig. 1b). Fluid state properties or fluxes 
are exchanged in an overlap region that couples the micro 

and macroscale solvers to each other. The DD method is 
mostly used for flows that exhibit near-surface phenomena. 
Its disadvantage is that for long, narrow channels there is 
no great computational saving because the entire length 
of the bounding wall must be simulated using the micro 
solver, and the bulk region is relatively small compared to 
what can be considered the near-wall region. This restricts 
the dimensions of systems that DD can be useful for. In 
addition, there is the complicated issue of the requirement 
for non-periodic boundary conditions (NPBCs) for the 
micro solver at the overlap region, and these may not be 
well established (see Mohamed and Mohamad (2010) and 
references therein). Furthermore, the accuracy of the cou-
pling is significantly diminished if the fluid viscosities used 
in the micro and macro solvers are not exactly equal (Del-
gado-Buscalioni and Coveney 2003a).

In the heterogeneous multiscale method (HMM), the 
macro solver spans the entire domain, with micro solv-
ers spatially dispersed to provide the micro resolution 
(see Fig. 1c). The macro solver is updated with local fluid 
information from the micro solvers. For example, at sur-
faces, slip velocity and shear stress information is passed 
to the macro solver, which negates the need for slip bound-
ary conditions; in the bulk fluid, shear stress information 

(a) (b)

(c) (d)

Fig. 1  Schematics of different types of hybrid multiscale methods 
applied to (a) a generic internal-flow problem: (b) the domain decom-
position method (DD), (c) the heterogeneous multiscale method 

(HMM), and (d) the internal-flow multiscale method (IMM). Repro-
duced from Borg et al. (2013a)



Microfluid Nanofluid 

1 3

is provided, removing the need for presumed constitutive 
relations or transport coefficients (Ren and E 2005). In 
return, the micro solvers are constrained by the local strain 
rate (and the temperature for non-isothermal flows) meas-
ured from the macro solver. The main drawback of HMM 
is that for narrow flow channels, the micro solver regions 
would likely overlap, rendering the computational speed-
up small and the accuracy lower than that of a pure micro 
solver. Problems with NPBCs remain and, for a fluid with 
unknown constitutive relations, the number of micro solv-
ers to accurately represent the varying stress field would 
further reduce any computational speed-up.

The internal-flow multiscale method (IMM) (Borg et al. 
2013b; Patronis et al. 2013) is a recent development to 
tackle the specific problem of simulating flow in long and 
narrow channels, for which (as outlined above) other hybrid 
techniques are less computationally efficient. The IMM 
hybridisation exploits length-scale separation between the 
gradually varying hydrodynamic processes occurring on 
scales of similar magnitude to the length of the channel, 
and the molecular processes occurring on scales of simi-
lar magnitude to the channel height or width. In IMM, a 
simple continuum description applies throughout the flow 
domain, but a number of short micro-solver elements are 
distributed along the length of the channel, each covering 
the entire channel height or width (see Fig. 1d). The num-
ber and position of micro-elements are chosen to be suf-
ficient to resolve the geometrical features of the channel, 
but contain, in total, far fewer molecules or particles than 
a simulation of the entire domain. There is no direct com-
munication between the micro and macro solvers. Instead, 
coupling is performed iteratively via simple mass conser-
vation and pressure continuity over the entire channel: the 
micro solver provides a local mass flow rate and the macro-
solver provides either a local pressure difference or a pres-
sure gradient. This approach removes any need to pass sur-
face information (such as slip) or constitutive information 
(such as viscosity) to the macro solver, as these are inher-
ently modelled within the micro-element simulations; the 
mass flow rate is the only information that is needed by 
the macro formulation from the micro elements. Another 
benefit is that IMM enables periodic boundary conditions 
(PBCs) to be used in the micro-element simulations, and 
these are far more efficient and convenient. One current 
limitation of this method, though, is that it is only applica-
ble to isothermal and steady-state flows, because the simu-
lations require long averaging periods to obtain low-noise 
measurements prior to coupling.

Borg et al. (2013a) applied the IMM to the simulation of 
serial networks of high-aspect-ratio channels (here referred 
to as a Serial-Network IMM implementation, SeN-IMM). 
The SeN-IMM decomposes a network into components, 
of which there are two types: channel components (which 

have a high aspect ratio, and can thus be represented by a 
shorter, computationally cheaper, series of micro elements 
as illustrated in Fig. 1d) and junction components (of arbi-
trary geometry, such as a reservoir or channel defect, for 
which no scale separation can be exploited, and thus must 
be simulated in their entirety). The term serial refers to the 
fact that in Borg et al. (2013a), every component in the net-
work could only have one inflow and one outflow, and so, 
the mass flow rate was constant in each micro element. A 
general network solver would require far greater practical 
applicability (e.g. for mixing channels and lab-on-a-chip 
devices) and is not trivial to implement. An example of a 
general network is shown in Fig. 2 and includes a bifur-
cating flow. Another limitation of the method proposed in 
Borg et al. (2013a) is that it is only appropriate for effec-
tively incompressible fluid conditions. However, flows 
at the nanoscale display compressibility even at very low 
Mach numbers (Gad-El-Hak 2006).

In this paper, we therefore extend the previous SeN-
IMM technique to encompass general network geometries 
(where each component can have any number of inlets and 
outlets) and incorporate an equation of state to account for 
fluid compressibility. We refer to this new method as the 
General Networks Internal-flow Multiscale Method (GeN-
IMM). The other assumptions in Borg et al. (2013a) are 
maintained, i.e. isothermal and steady-state flows. Our new 
method can potentially be used in conjunction with any 
micro solver, but for this paper, we have chosen MD.

Another novel aspect of our method is that it has the 
capability to act as a design tool, rather than just a simula-
tion tool. It enables mass flow rates (rather than just inlet/
outlet pressures) to be specified as boundary conditions. 
This is important in applications where the mass flow rate 
must be controlled, but the required inlet or outlet pressure 
to generate it is not known, for example, in drug delivery.

The GeN-IMM provides computational savings in three 
ways: (1) long channels are replaced by hydrodynamically 
equivalent shorter channel micro elements; (2) these micro-
elements reach steady state much faster than a simulation 

Fig. 2  Schematic of an example complex network with high-aspect-
ratio channels that can be solved by our hybrid method proposed in 
this paper. The network is decomposed into components by adopting 
an IMM approach in the long channels and full molecular dynamics 
simulations of the junctions
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of the full network, due to their small size; and (3) the trial-
and-error process necessary to determine pressure boundary 
conditions to achieve a desired mass flow rate is removed. 
Furthermore, as the micro elements are small and can be 
simulated independently of each other during each iteration, 
this new method is less dependent on access to supercom-
puter resources: micro-elements can be run on single graph-
ics processing units (GPUs) instead of a large number of 
central processing units (CPUs). There is often a limit to the 
number of molecules able to be processed on a GPU, and 
so, large MD simulations cannot benefit from them.

2  The hybrid method for networks: GeN‑IMM

We decompose a general fluidic network into components, 
with each being defined as either a junction component or 
a channel component (see Fig. 3 for an illustrative exam-
ple of such a decomposition). Our main purpose is to 
enable the channel components to be simulated separately 
using short, periodic, and computationally cheaper MD 
simulations (this is the IMM approach). Each component 
has a number of ‘inlet/outlet’ boundaries; these are either 
external boundaries to the network or internal boundaries 
which connect neighbouring components (see Fig. 3).

To make the separate simulations of components con-
sistent with conditions in the full network, the correct pres-
sure values at all boundaries must be established. These 
must ensure that the mass flow rate (ṁ) and pressure (P) at 
all internal boundaries are consistent and that any external 
boundary conditions are satisfied, i.e.:

where i and j refer to a pair of connecting internal bounda-
ries, from neighbouring components p and q, respectively, 
and

where the subscript B denotes an external boundary condi-
tion, either on pressure or mass flow rate, on the ith bound-
ary of the qth component. Note, by convention, the mass 
flow rate is treated as positive flowing out of the compo-
nent, hence the minus sign in Eq. (1).

In steady-state flows, the net mass flow rate through all 
boundaries of one component is zero:

where Wq is the total number of boundaries of the  qth com-
ponent. This local mass conservation (5) is automatically 
guaranteed by any individual component simulation, but it 
is only in combination with (1) that global mass conserva-
tion is satisfied over the whole network.

The required pressure values are found iteratively, with 
successive estimations moving conditions closer to global 
mass conservation (within the constraints described above). 
To generate pressure values for the next iteration, a linear 
prediction of how mass flow rate will change in response to 
changes in pressure is used:

where the terms in angle brackets are measurements 
extracted from component MD simulations at the previous 
iteration; the terms Kij,q are flow-conductance coefficients 
between the boundaries i and j in component q (their calcu-
lation is discussed in Appendix 1). Equation (6), in combi-
nation with Eqs. (1)–(5), provides a system of linear equa-
tions with an equal number of unknowns. This system can 
be solved using a straightforward matrix inversion proce-
dure (e.g. LU decomposition) to obtain values of pressure 
for the next iteration. Equation (6) ensures that as the com-
ponent MD simulations approach global mass conserva-
tion (i.e. �ṁi,q� → ṁi,q), the values of pressure cease to be 
updated in subsequent iterations (i.e. Pi,q → �Pi,q�). Note, 

(1)ṁi,p = −ṁj,q,

(2)Pi,p = Pj,q,

(3)ṁi,q = ṁB,

(4)Pi,q = PB,

(5)

Wq
∑

i=1

ṁi,q = 0,

(6)

ṁi,q −

Wq
∑

j=1(�=i)

(

Pi,q − Pj,q

)

Kij,q

= �ṁi,q� −

Wq
∑

j=1(�=i)

(

�Pi,q� − �Pj,q�
)

Kij,q ,

(a) (b)

Junction 
Component

Channel 
Component

External
Boundaries

MD Micro- 
element

Internal 
Boundaries

External
Boundaries

Fig. 3  Schematics of (a) a simple Y-junction network with (b) the 
network decomposed into components; internal and external bounda-
ries are highlighted
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this converged result is independent of the flow conduct-
ances (Kij,q), which only affect the convergence rate and the 
approach to convergence.

Fluid compressibility in the network, due to large 
changes in pressure, can be allowed for in GeN-IMM by 
modifying the number of molecules in each component 
simulation according to an empirical equation of state relat-
ing average mass density to the boundary pressures of the 
component. The empirical equation is of the form:

where ρ̄q is the volume-averaged mass density in the  qth 
component, ab,q are constants, β is the order of the polyno-
mial equation, and

where Pi,q is the pressure at the ith of Wq boundaries. The 
coefficients ab,q are determined from a presimulation of a 
periodic cube of fluid molecules. Pressure measurements 
for different densities are obtained using a standard Irving-
Kirkwood calculation, and a β-order polynomial is then fit-
ted to the data, which provides the coefficients. The values 
of ab,q for liquid argon can be found in Appendix 2; the 
same values are used in all the multiscale solutions of this 
paper. Equations (7) and (8) enable us to estimate the num-
ber of molecules that need to be added or removed (using 
the FADE algorithm of Borg et al. (2014), the USHER 
algorithm of Delgado-Buscalioni and Coveney (2003b), or 
the AdResS scheme of Praprotnik et al. (2005)) for the next 
iteration of each component simulation.

2.1  Simulating channel components

Solving Eqs. (1)–(6) provides the pressure values that sat-
isfy external boundary conditions, that are consistent at 
internal boundaries, and that create a mass-flow response 
that is closer to being globally conservative than that of 
the previous iteration. We now discuss how these bound-
ary conditions can be applied to the individual component 
simulations.

The channel components, by definition, are highly scale 
separated and can thus be simulated using shorter MD 
channels (which is the same as the IMM procedure of Borg 
et al. (2013b) and Patronis et al. (2013)). In the example 
of Fig. 3(b), the channel has a uniform cross section in 
the streamwise direction. Therefore, given the assumption 
that the pressure varies approximately linearly along the 
entire channel length L, it is sufficient to model the chan-
nel using a shorter periodic MD micro-element of length 

(7)ρ̄q =

β
∑

b=0

ab,qP̄b
q ,

(8)P̄q =
1

Wq

Wq
∑

i=1

Pi,q,

L′ with a uniform cross-sectional area, as shown in Fig. 4. 
A weak streamwise pressure gradient is hydrodynamically 
equivalent to a constant streamwise body force because the 
momentum flux produced is identical. As such, the pressure 
drop across a long channel can be simulated by applying a 
uniform body force Fq to all fluid molecules in a periodic 
MD channel of arbitrary length, using a central-difference 
approximation:

where m is the mass of a single molecule, and the direction 
of a positive force is from boundary i to boundary j. The 
computational savings accrued by using small MD micro-
elements to model large-aspect-ratio channel components 
is the main source of speed-up in the GeN-IMM and is 
roughly proportional to L/L′ for these components.

In certain liquid cases, and commonly in rarefied gases 
(Huang et al. 2007), the pressure distribution along long 
channels can be nonlinear. In these instances, the channel 
component is divided into multiple MD micro-elements, 
such that the combination of the linear pressure gradient 
over each micro-element is a good approximation of the 
overall pressure variation (see Borg et al. (2013b); Patronis 
et al. (2013)).

2.2  Simulating junction components

Junction components, unlike channels, cannot be repre-
sented using smaller MD simulations; there is no obvious 
scale separation that can be exploited, so the full compo-
nent must be simulated.

However, what is not straightforward in MD is how to 
deal with the non-periodicity of most junction components 

(9)Fq =
(Pi,q − Pj,q)m

ρ̄qL
,

Channel
Component

MD micro-
element

Fig. 4  Schematic of the channel component from Fig. 3, demonstrat-
ing how a shorter micro MD simulation is used to represent the origi-
nal channel
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(e.g. the Y-junction in Fig. 3). There are no available MD 
ensembles to solve non-periodicity, even though a signifi-
cant amount of progress has been made on developing arti-
ficial NPBCs (see Mohamed and Mohamad (2010) and ref-
erences therein).

Here, we circumvent this problem by introducing an arti-
ficial region attached to the main component, which ena-
bles convenient PBCs to be used, as shown in Fig. 5. The 
correct pressure boundary conditions for the real region are 
established by applying body forces in localised regions of 
constant cross section within the artificial region, which 
create sharp jumps in pressure, Φi,q (and introduces more 
unknowns into the system of equations). As in Eq. (6), 
these body forces are determined iteratively by making a 
linear prediction of how the mass flow rate and pressure in 
the real domain will be affected by the body-force-gener-
ated pressure jumps Φi,q:

where ∆Pij,q = (Pi,q − Φi,q) − (Pj,q − Φj,q), Lij,q are flow-
conductance coefficients, and the angular brackets denote 
a measurement extracted from the MD simulation at the 
previous iteration. The exact relationship between the body 
forces Fi,q and pressure jumps Φi,q is given in Appendix 
3. The sign differences between Eqs. (6) and (10) arise 
because the mass flow rate at a boundary is deemed to be 
positive if it flows out of the component.

At one boundary in each component (chosen arbitrarily), 
no body force is applied, i.e. Φ1,q = 0, so as not to over-
constrain the simulation.

2.3  Algorithm

We now outline the iterative algorithm for general multi-
scale network configurations:

1. Approximate the flow-conductance coefficients Kij,q, 
Lij,q for each component. The terms in angular brackets 
in Eqs. (6) and (10) are assumed to be zero.

2. Solve the set of linear Eqs. (1)–(6) and (10), using 
matrix inversion, for the predicted mass flow rates ṁi,q, 
pressures Pi,q and junction pressure jumps Φi,q.

3. Solve Eqs. (7)– (9) for the mass densities ρq and chan-
nel component body forces Fq, using the predicted val-
ues of pressure Pi,q previously calculated.

4. Run all micro-element MD simulations with the new 
body forces and updated average densities until steady 
state. At steady state, measure time-averaged mass flow 
rates �ṁi,q� and pressures 〈Pi,q〉 at every boundary (for 
junctions), and the mean pressure �P̄q� (for channels). 

(10)

ṁi,q +

Wq
∑

j=1(�=i)

∆Pij,qLij,q = �ṁi,q� +

Wq
∑

j=1(�=i)

�∆Pij,q�Lij,q ,

These measured properties are used in Eqs. (6) and 
(10) for the next iteration. Note, for channel compo-
nents, the term (Pi,q − Pj,q) is obtained directly from 
Eq. (9).

5. Update the flow-conductance coefficients Kij,q and Lij,q.
6. Repeat from step 2 until a convergence criterion is met 

for the mass flow rate at a given boundary: 

 or for the pressure: 

 depending on what the boundary constraints are. Here 
ζ tol is a predetermined convergence tolerance and the 
superscripts l and l − 1 denote values calculated at the 
current and the previous iteration, respectively.

2.4  Molecular dynamics

In order to validate our hybrid technique, we solve full 
networks with non-equilibrium MD simulations (Rapa-
port 2004; Allen and Tildesley 1987) using the mdFoam 
solver (Macpherson and Reese 2008; Borg et al. 2010) 
developed in OpenFOAM, an open-source set of C++ 
libraries for solving sets of differential equations in 
parallel (www.openfoam.org). We use the same MD 
solver in the iterative scheme outlined above, applying 
body force and density constraints to the micro-element 
simulations.

For simplicity, and in order to demonstrate our tech-
nique, we simulate spherically symmetric monatomic par-
ticles (hereon referred to as ‘molecules’) of liquid argon, 
which interact through Lennard-Jones pairwise potentials. 

(11)ζi,q < ζ tol, with ζi,q =

∣

∣

∣

∣

[

ṁi,q

]

l
−

[

ṁi,q

]

l−1
[

ṁi,q

]

l

∣

∣

∣

∣

,

(12)ζi,q < ζ tol, with ζi,q =

∣

∣

∣

∣

[

Pi,q

]

l
−

[

Pi,q

]

l−1
[

Pi,q

]

l

∣

∣

∣

∣

,

Real 
Region

Artificial 
Region

(a) (b)

Fig. 5  Schematics of (a) the junction component from Fig. 3 with 
body forces Fi,q and Fj,q applied in the artificial region and (b) the 
periodic MD micro-element simulation setup of the same component
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However, our method is generally applicable to more com-
plex and realistic molecular models. Solid walls in all the 
MD simulations consist of rigid molecules of argon that are 
kept fixed in space and time. The dynamics of the liquid 
argon molecules are described by Newton’s equations of 
motion, with an added external force, f (ext):

where k is a molecule in the system and rk = (xk , yk , zk) is 
its time-instantaneous position in a fixed Cartesian coordi-
nate reference system. Each molecule has a mass mk and 
a velocity vk = (uk , vk , wk). The total intermolecular force 
on each molecule f

′
k = −

∑

j ∇U(rkj) is determined from 
neighbouring molecules j, where U(rkj) is the pair potential 
and rkj = |rk − rj| is the pair-molecule separation. Equa-
tions (13) and (14) are integrated in space and time using 
the Velocity Verlet method with a time-step of 5.4 fs. We 
adopt the Lennard-Jones (LJ) 12–6 potential, widely used 
to model simple liquids,

where σ and ǫ are the length and energy characteristics 
of the potential, and rc = 1.36 nm is the cut-off separa-
tion. The σ and ǫ properties for the liquid–liquid (l–l) and 
wall–liquid (w–l) interactions are taken from Thomp-
son and Troian (1997), with the intention to generate slip 
at solid-liquid interfaces. The values for these are, σl−l = 
3.4 ×10−10 m, ǫl−l = 1.65678 ×10−21 J, and σw−l = 2.55 
×10−10 m, ǫw−l = 0.33 ×10−21 J. The mass density of the 
wall molecules is ρw = 6.809 ×103 kg/m , and the mass of 
one molecule is 6.6904 ×10−26 kg.

All our MD simulations are three-dimensional, with 
PBCs applied in every direction. The cases are all set up 
so that there are no gradients of properties in one direction 
perpendicular to the flow; so, the depth is chosen as a com-
promise between computational efficiency and the ability 
to generate sufficient data for averaging.

The external forcing f (ext) in Eq. (14) is used both to gen-
erate pressure jumps (in the artificial regions of the junction 
components) and to represent linear pressure gradients (for 
channel components), as described previously. The heat 
generated indirectly by this forcing is removed to ensure 
a thermally homogeneous system; we utilise a Berendsen 
thermostat (Berendsen et al. 1984) to rescale the veloci-
ties of molecules. This thermostat operates on the ther-
mal velocities, minimising the impact on the streamwise 

(13)
d

dt
rk = vk ,

(14)mk

d

dt
vk = f

′
k + f

(ext),

(15)U12−6(rkj) =







4ǫ

�

�

σ
rkj

�12
−

�

σ
rkj

�6
�

if rkj < rc

0 if rkj ≥ rc,

velocity. The thermostat is implemented via localised bins 
over the entire MD domain in the streamwise and trans-
verse flow directions, with bin sizes of 0.68 nm. Each bin 
has a target temperature of T = 292.8 K, using a time-con-
stant τT = 21.61 fs.

The net mass flow rate ṁi (kg/s) is calculated by sum-
ming the number of molecules that cross a measurement 
plane in a given direction over a long averaging time 
∆tav. For junction components, mass flow rate is meas-
ured at each boundary. The mass of the total number of 
molecules that cross the boundary travelling from the 
real region to the artificial region is counted as positive 
and that crossing in the opposite direction is counted as 
negative, i.e.

where n̂i is the streamwise direction unit vector and δN is 
the total number of molecules that cross the boundary dur-
ing the time period t → t + ∆tav. The direction of cross-
ing is obtained by the signum function, sgn(x). For channel 
components, the mass flow rate is measured at the centre of 
the micro-element.

3  Results and discussion

The GeN-IMM method is tested on compressible pressure-
driven flows through some simple network configurations. 
Due to the statistical noise created by thermal fluctuations, 
large pressure gradients are required in MD simulations of 
Poiseuille flows (Koplik et al. 1988; Travis et al. 1997) in 
order to achieve sufficiently low-variance data within a rea-
sonable time frame.

Our results are validated via comparison to a full MD 
simulation of the entire network. In this way, any approxi-
mations made within the MD model are negated as they are 
the same in both the full and the hybrid cases. The pres-
sure drops over the full MD networks are generated in the 
same manner as for junction micro-elements (i.e. the appli-
cation of body forces in an artificial region). The networks 
are restricted to a relatively small size in order that these 
full MD simulations are not too computationally expensive. 
The full MD simulations are run in parallel on 48 CPUs, 
while the MD micro-elements for the hybrid solution are 
run on single GPUs.

The first network we analyse is a straight channel con-
necting two reservoirs i.e. a serial network, which is similar 
to a test case in Borg et al. (2013a); the second network is 
a bifurcating channel i.e. a general network, which demon-
strates the novel capabilities of GeN-IMM.

(16)�ṁi� =
1

∆tav

δN
∑

k

mksgn(vk · n̂i),
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3.1  A straight channel geometry

The configuration of the first network is a relatively long, 
straight nanochannel connecting an inlet reservoir to an 
outlet reservoir, as shown in Fig. 6a. Figure 6b shows the 
hybrid decomposition, consisting of three micro-elements: 
an inlet reservoir, a short channel to represent the long 
channel, and an outlet reservoir. The extent of the entrance/
exit channel sections of the reservoir micro-elements has 
been chosen conservatively to be roughly twice the chan-
nel flow entrance length from laminar macroscopic flow 
theory. This ensures the flow in micro-element #2 is fully 
developed and is not affected by expansion/contraction 
effects.

The length of the channel component is L = 102 nm, 
which is represented in the multiscale model by a micro-
element of length L′ = 4.08 nm, producing a length ratio 
of L/L′ = 25. The height of the channel section is 3.4 nm, 
which is sufficiently small that there is non-continuum flow 
behaviour in the LJ liquid argon (e.g. molecular layering 

and velocity slip at the liquid–solid interface) that would 
not be effectively captured by a standard Navier–Stokes 
fluid dynamics solution. The reservoir height (in the 
y-direction) is 6.8 nm, and the depth (in the z-direction) is a 
uniform 6.8 nm along the entire network and in each micro-
element. A large pressure drop of ≈ 350 MPa is imposed 
over the network for the reason described above.

This network geometry is used to present two cases: case 
1, where the multiscale method is constrained by external 
pressure boundary conditions at the inlet and outlet, i.e. 
boundaries #1 648 MPa, and #6 295 MPa, respectively (see 
Fig. 6a); case 2, where the external boundary conditions are 
an inlet pressure of 648 MPa and a mass flow rate 1.54 ng/s. 
This will demonstrate the versatility of the method as either 
a simulation tool (case 1) or a design tool (case 2).

The iterative algorithm previously outlined is performed 
for 5 iterations (although convergence occurs in fewer) to 
illustrate the numerical stability of the method. Figure 7 
shows an example of how the measured mass flow rate and 
pressure develops with iteration number at boundary #1 

(a) Multiscaled Network 

(c) Full MD Simulation

(b) Hybrid Simulation
micro resolution

(i) MD micro-element #1: 

     Inlet reservoir

(ii) MD micro-element #2:

      Channel

(iii) MD micro-element #3: 

       Outlet reservoir

1 2 3 4 5 6

21 65

1 2 3 4 5 6
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0

0 5.44 13.6 16.32 0 2.72 10.88 16.32

0 4.08

4.08

0.68
0

4.76

Real region
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Fig. 6  a Schematic of the straight channel multiscale network with (b) the hybrid MD GeN-IMM decomposition and (c) the full MD setup. 
Dimensions are in nanometres. The boundary numbers are labelled above each image
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for case 1. There is quick and accurate convergence of our 
GeN-IMM solution to the full MD result, and good numeri-
cal stability. The error bars for both the full and multiscale 
solutions are 1.96 standard deviations either side of the 
mean to represent the 95% confidence interval and take 
into account the amount of correlation that occurs within 
each micro-element or full network.

Complete results demonstrating convergence speed and 
precision for both cases are detailed in Fig. 8, and Tables 1 
and 2, respectively. In the tables, the reference mass flow 
rate ṁR and reference pressure PR are taken to be the larg-
est mass flow rate and pressure measured in the multiscale 
simulations, respectively, as it is these values which most 
strongly govern the flow characteristics. In both cases 
the final error in the multiscale solution is ≈ 1 % at each 
boundary for both mass flux and pressure. This can be 

compared to relative errors of 73 and 50 % for the initial 
mass flow rate/pressure predictions in case 1 and 2, respec-
tively. The fluctuation of the mass flow rate between itera-
tions 2 and 5 in Fig. 7a is of similar magnitude to the error 
bars and so can be accounted for by the noise inherent in 
the MD simulations.
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Fig. 7  Straight channel case 1 multiscale measurements of mass flow 
rates and pressure at boundary #1, progressing with number of itera-
tions. The pressure error bars are smaller than the size of the symbol 

used. Comparisons are made with the results from a full MD simula-
tion of the same case

Table 1  Straight channel iteration 5: steady-state mass flow rate data 
for the multiscale method and the full MD solution. Relative error 
calculated as |ṁF − ṁi|/|ṁR| × 100

Boundary # Full MD ṁF  
(ng/s)

Multiscale ṁi  
(ng/s)

Relative error ei  
(%)

Case 1 Case 2 Case 1 Case 2

1 1.5389 1.5227 1.5457 1.04 0.45

2 1.5387 1.5226 1.5456 1.04 0.45

3 1.5389 1.5310 1.5517 0.51 0.83

4 1.5389 1.5310 1.5517 0.51 0.83

5 1.5389 1.5461 1.5342 0.46 0.30

6 1.5387 1.5461 1.5342 0.48 0.29

Table 2  Straight channel iteration 5: steady-state pressure data for 
the multiscale method and the full MD solution. Relative error calcu-
lated as |PF − Pi|/|PR| × 100

Boundary # Full MD PF  
(MPa)

Multiscale Pi  
(MPa)

Relative error ei  
(%)

Case 1 Case 2 Case 1 Case 2

1 648.01 647.99 647.60 0.00 0.06

2 606.07 604.81 604.53 0.20 0.25

3 606.07 605.70 604.90 0.06 0.19

4 318.77 318.63 315.96 0.04 0.88

5 318.77 317.68 316.04 0.33 0.86

6 295.06 295.28 293.70 0.07 0.46

1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

ITERATION

R
E

S
ID

U
A

L,
 ζ

CASE 1

CASE 2

Fig. 8  Convergence of the multiscale method applied to the straight 
channel network cases 1 and 2. The horizontal line is the prescribed 
tolerance, ζ tol
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Setting a fairly tight convergence tolerance, ζ tol = 0.02, 
both cases converge comfortably within three iterations. Case 
1 may converge slightly quicker than case 2; this is because 
mass flow rate measurements are more subject to noise than 
pressure measurements, so we may have a little less confi-
dence in the accuracy of the mass flow rate constraint.

To ensure the multiscale solution is accurately represent-
ing the full MD system, longitudinal and transverse profiles 
are also plotted. Figure 9 shows the measured streamwise 
pressure and density profiles for case 1 at iteration 5. It is 
clear that the profiles for the junction micro-elements at the 
inlet and outlet (micro-elements #1 and #3, respectively) 
are in good agreement with the results from the full MD 
simulation. As outlined in Sect. 2.1, in the channel micro-
element (#2), a body force is applied over the MD domain 
that is proportional to the required pressure gradient, and 
the boundary pressures are then extrapolated from the cen-
tral point in the channel. As such, in this multiscale solu-
tion, the pressure profile in the channel section is linear. 
Evidently, from Fig. 9, this is not so for the full MD sim-
ulation—although it seems to have had little impact on the 
overall accuracy of the method, suggesting that the linear 
approximation is acceptable, at least in this case.

Figure 10 presents streamwise velocity and density pro-
files transverse to the flow for case 1 at iteration 5, super-
imposed onto the profiles for the full MD simulation. 
These profiles are measured at the half way point along 
the network, at the plane A–A (see Fig. 10a). Once again, 
excellent agreement between the simulations is found, 
including the accurate capturing of non-equilibrium and 

non-continuum effects, namely velocity slip and molecular 
layering in the velocity and density profiles, respectively.

While accuracy is important, hybrid methods also need 
to show improved computational efficiency over a full sim-
ulation. We measure computational speed-up by comparing 
the product of the total number of time-steps and the aver-
age simulation time for one time-step, for both the full and 
the hybrid solutions, τF and τM, respectively. The total num-
ber of time-steps was considered to be the number of time-
steps taken for the hybrid solution to exhibit the same level 
of error as the full network solution, and the time taken to 
reach steady state is included within the measurement time. 
For a fair comparison, the average simulation time for one 
time-step was calculated by running each micro element 
or full network on one central processing unit (CPU). The 
full MD simulation was run for approximately 1,400,000 
time-steps, costing 9.4 s in computational time per time-
step. The micro elements for the hybrid solution were run 
for between 800,000 and 1,200,000 time-steps per itera-
tion, costing between 0.2 and 0.65 s per time-step. Assum-
ing three iterations to convergence, the speed-up τF/τM is 
calculated to be 3.9. This is smaller than the value of 7.6 
calculated by Borg et al. (2013a) for a similar network 
because this latter paper combined the two reservoir micro-
elements into one, to avoid having to use artificial regions. 
While this is a useful technique, it is highly specific to the 
geometry of the network, requiring a serial network with 
junction components at both the inlet and the outlet. Here, 
we have relaxed this requirement in order to construct a 
more general technique. In Borg et al. (2013a), the channel 

Fig. 9  Full MD and case 1 
multiscale longitudinal profiles 
of (a) pressure and (b) density 
(averaged over the cross sec-
tion). The multiscale density 
profile in the channel section is 
generated with the equation of 
state described in Sect. 2.3
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height is also slightly greater, so more is gained through the 
length-scale separation in component #2 than in the present 
study.

Although the speed-up is fairly modest it should be 
noted that this test case is developed in order to deter-
mine the accuracy of the method. A very large network 
would have rendered a full MD simulation computationally 
intractable. So, the computational speed-up is expected to 
increase dramatically as the scale separation and size of the 
network increases.

3.2  A bifurcating channel geometry

The second network we test is a bifurcating channel, which 
demonstrates the generality of the method: this is a con-
figuration that has not previously been open to multiscale 
solution. The network, along with its hybrid decomposition 
and full MD setup (for validation purposes), is shown in 
Fig. 11. The network is split into four components: three 
channel components at the inlets/outlets and one bifurcat-
ing junction component linking them. The lengths of the 
entrance/exit channel sections of the Y-junction micro-
element are ≈ 6 nm in both the real and artificial regions. 
This size has been chosen conservatively to be at least 
four times the largest channel flow entrance length cal-
culated from laminar macroscopic flow theory for these 
cases (≈ 0.35–1.5 nm), and to be greater than the MD 
development length calculated by Borg et al. (2013a), 
for similar channel cross sections, using a root mean 

square deviation approach (≈ 2–4 nm). This ensures that 
the flow in the connecting parts of the Y-junction is fully 
developed and so does not introduce any artificial distur-
bances into the multiscale model. Each channel compo-
nent has a length of L1 = L2 = L3 = 68 nm, while their 
MD micro-elements in the hybrid method are once again 
L′

1 = L′
2 = L′

3 = 4.08 nm, producing length ratios of 
L/L′ = 16.7. To add to the complexity and make the solu-
tion less apparent, the channel micro-elements are of dif-
ferent heights: 4.08, 2.72, and 3.40 nm for micro-elements 
#1, #3, and #4, respectively. All micro-elements and the full 
MD network have a depth in the z-direction of 5.44 nm. 
This is smaller than in the straight channel network of Sect. 
3.1 so that the full MD simulation for validation is not too 
time-consuming, as the network is now much larger.

Using this network, we modelled two further cases: case 
3, which has an inlet at boundary #1 565 MPa, and out-
lets at boundaries #7 135 MPa and #9 140 MPa; and case 
4, which has inlets at boundaries #1 427 MPa and #7 699 
MPa, and an outlet at boundary #9 46 MPa. In this way, 
we simulate two different case variants: a bifurcating case 
(case 3), with one branch splitting into two; and a mixing 
case (case 4), with two branches joining into one, see Fig. 
11a. For both cases, pressure boundaries are employed at 
all inlets/outlets.

For both cases, convergence occurred within 3 iterations 
to a tolerance ζ tol = 0.02. The mass flow rate and pressure 
data for case 3 are shown in Tables 3 and 4, respectively. 
Again, good accuracy is seen, with the mass flow rate 
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errors being less than 2 %, and the pressure errors being 
mostly less than 1 %, compared to an initial prediction 
error of 31 %. In addition, the nanoscale fluid phenomena 
(i.e. velocity slip and molecule layering) seen in the full 
MD simulation are accurately replicated in all the multi-
scale model channel micro-elements and at the internal 
boundaries of the Y-junction micro-element, as shown in 
Fig. 12.

Tables 5 and 6 show the data for case 4. In this case, 
the final errors are around 4 % for the mass flow rate and 
1.5 % for pressure, compared to an initial prediction error 
of 53 %. The likely reasons for this larger error can be 
seen from the longitudinal pressure and density profiles in 
Fig. 13. While in MD simulations a high pressure gradient 
is needed to overcome thermal fluctuations, large pressure 

Fig. 11  a Schematic of the 
bifurcating channel multiscale 
network and its two flow cases 
with (b) the hybrid GeN-IMM 
decomposition and (c) the full 
MD setup. Dimensions are 
in nanometres. The boundary 
numbers are also labelled in 
each image

(a) Multiscaled Networks

micro resolution

(i) Case 3 (ii) Case 4

(c) Full MD Simulation

(b) Hybrid Simulation

(i) MD micro-element #1: 
     Channel

(ii) MD micro-element #2:
      Y-junction

(iii) MD micro-element #3: 
       Channel

(iv) MD micro-element #4: 
       Channel
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Table 3  Case 3 (bifurcating configuration) iteration 5: steady-state 
mass flow rate data for the multiscale method and the full MD solu-
tion. Relative error calculated as |ṁF − ṁi|/|ṁR| × 100

Boundary # Full MD ṁF  
(ng/s)

Multiscale ṁi  
(ng/s)

Relative error ei  
(%)

1 2.3942 2.3627 1.32

2 2.3942 2.3627 1.32

3 2.3942 2.3535 1.70

4 0.9258 0.9115 1.55

5 1.4691 1.4416 1.88

6 0.9258 0.9133 1.36

7 0.9258 0.9133 1.35

8 1.4691 1.4465 1.54

9 1.4691 1.4464 1.54
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differences can lead to nonlinearities in pressure and den-
sity along the channel. The net flow conductance through 
the network in case 4 is lower than it is in case 3, so in 

order to achieve relatively noise-free mass flow rate meas-
urements, a larger pressure drop is required. This, in turn, 
creates greater pressure nonlinearity. In MD, pressure non-
linearity arises from varying viscous pressure losses due 
to the density-dependent viscosity. The rate of viscosity 
variation increases with increasing density (and thus pres-
sure), and the larger pressure drop in case 4 leads to higher 
pressures: there are no other pressures as large as those in 
micro-element #3 in case 4—reaching up to 700 MPa. Fur-
thermore, the more complex the network, the more compo-
nents are required in a multiscale model; small errors will 
accumulate as fewer components are directly constrained 
by the boundary conditions.

The speed-ups for cases 3 and 4 are relatively low. The 
full MD simulation was run for approximately 1,400,000 
time-steps, costing 14.3 and 13.4 s per time-step for cases 
3 and 4, respectively. The micro-elements for the hybrid 
solution were run for 800,000–1,200,000 time-steps per 
iteration, costing 0.2–3.0 s per time-step. Therefore, 
τF/τM = 2.1 for case 3 and τF/τM = 2.0 for case 4. The 
complex geometry shows the disadvantage of using PBCs 
in MD. Although physically simple, the necessity for a 
mirroring boundary leads to a large artificial region that is 
costly to simulate, especially across multiple iterations. The 
exploitation of length-scale separation had to be minimised 
in these test cases in order that we would also be able to 
simulate the full network (for validation purposes) within a 
reasonable time.

It should be noted that, although the method is dem-
onstrated here using MD as the micro solver, it is poten-
tially compatible with any other micro solver, such as the 
direct simulation Monte Carlo (DSMC) method for gas 
flows, where NPBCs are better developed. Using a different 
micro solver may therefore remove the need for an artificial 
region and dramatically increase the speed-up in networks 
such as this.

4  Conclusion

We have presented a Generalised-Networks IMM (GeN-
IMM) that enables the flow of compressible fluids within 
complex, non-serial nanoscale geometries to be accu-
rately and efficiently modelled. Molecular dynamics (MD) 
has been used as the micro solver, while the conservation 
of mass and the continuity of pressure between compo-
nents provides the macro solution. The advantage of this 
approach is that nanoscale effects such as slip and molec-
ular layering can be accurately captured within the multi-
scale solution, whereas a conventional Navier-Stokes-Fou-
rier solution of the network would not be able to predict 
these important effects. The solver coupling is through the 
exchange of mass flow rate and pressure information from 

Table 4  Case 3 (bifurcating configuration) iteration 5: steady-state 
pressure data for the multiscale method and the full MD solution. 
Relative error calculated as |PF − Pi|/|PR| × 100

Boundary # Full MD PF  
(MPa)

Multiscale Pi  
(MPa)

Relative error ei  
(%)

1 564.84 564.46 0.07

2 332.28 334.01 0.31

3 332.28 333.86 0.28

4 262.71 267.86 0.91

5 257.16 262.01 0.86

6 262.71 268.57 1.04

7 135.38 135.75 0.07

8 257.16 261.89 0.84

9 139.64 139.53 0.02

Table 5  Case 4 (mixing configuration) iteration 5: steady-state mass 
flow rate data for the multiscale method and the full MD solution. 
Relative error calculated as |ṁF − ṁi|/|ṁR| × 100

Boundary # Full MD ṁF  
(ng/s)

Multiscale ṁi 
(ng/s)

Relative error ei  
(%)

1 1.3179 1.4165 3.85

2 1.3179 1.4165 3.85

3 1.3179 1.4166 3.86

4 −1.2381 −1.2437 0.22

5 2.5565 2.6606 4.07

6 −1.2381 −1.2412 0.12

7 −1.2381 −1.2412 0.12

8 2.5565 2.6486 3.60

9 2.5565 2.6486 3.60

Table 6  Case 4 (mixing configuration) iteration 5: steady-state pres-
sure data for the multiscale method and the full MD solution. Relative 
error calculated as |PF − Pi|/|PR| × 100

Boundary # Full MD PF  
(MPa)

Multiscale Pi 
(MPa)

Relative error ei  
(%)

1 427.02 427.40 0.05

2 313.43 306.56 0.98

3 313.43 306.02 1.06

4 351.41 341.09 1.49

5 218.86 211.13 1.10

6 351.41 340.09 1.62

7 699.15 699.08 0.01

8 218.86 211.22 1.09

9 45.78 45.89 0.02
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Fig. 12  a Schematic showing location of measurements of fluid 
transverse profiles. Case 3 (bifurcating configuration) full MD and 
multiscale transverse profiles of streamwise velocity and density at 

plane A–A (b, e), plane B–B (c, f), and plane C–C (d, g), and at inter-
nal boundaries 2|3 (h, k), 4|6 (i, l), and 5|8 (j, m)
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micro to macro, and body force and density controls from 
macro to micro.

In our network test cases, we found this multiscale 
method converged after 3 iterations to mass flow rate 
and pressure errors of < 4 % and usually better than 2 %, 
respectively (when compared to full MD simulations of the 
same network). The multiscale approach provided a com-
putational speed-up over full MD of between 2 and 4 times.

The new method has some clear advantages over full 
molecular simulations: (1) it is more efficient than a full 
MD simulation, and the computational speed-up will 
be even greater for larger networks (the longer the chan-
nels represented by shorter periodic channels, the greater 
the savings); (2) it can be used as a design tool, due to the 
ability to set mass-flow-rate conditions as constraints to the 
solution; (3) it is ideally suited to be run on a small cluster 

of CPUs/GPUs (either simultaneously or sequentially, if 
resources are limited) since the micro-elements are rela-
tively small simulations that can be run independently at 
each iteration.

The drawbacks are that the method is currently lim-
ited to isothermal and steady flows, and that the speed-up 
in complicated networks is reduced due to the necessary 
presence of artificial regions in junction micro-elements 
so that periodic boundary conditions can be employed. 
However, it should be noted that as the size and complex-
ity of the network increases, the relative size of the artifi-
cial regions decreases, and so greater savings are made. 
We conservatively suggest, as a rule of thumb, that artifi-
cial regions should be the same size as the real regions in 
junction micro-elements, and that each region should have 
a development length of at least four times that predicted 

Fig. 13  Case 4 (mixing 
configuration): full MD and 
multiscale longitudinal profiles 
of (a) pressure, and (b) density. 
The multiscale density profile in 
the channel sections are gener-
ated with the equation of state 
described in Sect. 2.3
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by laminar macroscopic flow theory in order to ensure that 
no disturbance propagates into the flow field and the flow 
in channel components is fully developed.

Future work should extend the method to quasi-steady 
problems with large time-scale separation, and to non-
isothermal problems. In addition, extending the method 
to accommodate multispecies flows could lead to interest-
ing mixing cases for which there is currently no multiscale 
technique. The application of the method in conjunction 
with other molecular solvers (e.g. DSMC) should also be 
investigated and, finally, the use of non-periodic bound-
ary conditions could provide additional speed-up for more 
complex networks as costly artificial regions would not 
then be required.
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Appendix 1: Estimation of flow conductance coefficients 
Kij,q

The flow-conductance coefficients, Kij,q (=Kji,q), can be 
either estimated( e.g. using a continuum model or from 
past experience of the component geometry type) or calcu-
lated using MD simulations from previous iterations and/
or those performed prior to the start of the main simula-
tions. The latter is done by solving a set of simultaneous 
equations for each component q, using pressure and mass 
flow rate data at boundaries i and j from MD simulations 
(denoted by ′):

In a component with W boundaries, there are W(W − 1)/2 
independent flow-conductance coefficients Kij,q and each 
MD simulation provides W − 1 unique equations. This 
means ⌈W/2⌉ MD simulations are required to adequately 
define all flow conductance coefficients.

In this paper, a mixture of preliminary MD simula-
tions and estimations from experience were used for ini-
tial approximations, then data from the latest iteration was 
used to continuously refine the prediction of Kij,q. The ini-
tial Kij,q values used are shown in Table 7. In general, the 
convergence characteristics have been shown to be fairly 
insensitive to the values of Kij,q, but a detailed sensitivity 
study is necessary future work.

Appendix 2: Equation of state coefficients ab,q

The equation of state coefficients ab,q that are used in  
Eq. (7) are shown in Table 8 for liquid argon, using β = 10.

Appendix 3: Generating pressures in junction 
micro‑elements

The most convenient and common way of emulating a pres-
sure gradient in simple MD flow channels is to apply a uni-
form body force to all liquid molecules in the channel (Kop-
lik et al. 1988; Travis et al. 1997; Travis and Gubbins 2000; 
Fan et al. 2002; Docherty et al. 2014), accompanied by 
periodicity in the flow direction. However, when the geom-
etry is non-uniform in its cross section, as is the case for 

(17)�ṁi�
′ =

W
∑

j=1(�=i)

�Pi − Pj�
′Kij,q.

Table 7  Initial flow conductance coefficients Kij,q

Case # Component # q Boundary # i, j Flow coeff. Kij,q  
(×10−20 m s)

1 & 2 1 1, 2 −4.2866

2 1, 2 −1.0708

3 1, 2 −6.2154

3 & 4 1 1, 2 −1.7281

2 1, 2 −1.4744

2 1, 3 −2.0921

2 2, 3 −0.6242

3 1, 2 −7.2492

4 1, 2 −1.1581

Table 8  Equation of state coefficients ab,q

b ab,q

10 −1.0214 × 10−83

9 4.6745 × ×10−74

8 −9.2942 × ×10−65

7 1.0536 × ×10−55

6 −7.5148 × ×10−47

5 3.5142 × ×10−38

4 −1.0905 × 10−29

3 2.2310 × 10−21

2 −2.9569 × 10−13

1 2.5750 × 1010−5

0 −66.6108
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junction micro-elements (and the full MD simulations of the 
networks), the pressure gradient becomes a varying field. As 
such, the flow generated by a uniform body forcing will no 
longer be hydrodynamically equivalent to that created by an 
imposed pressure difference over the same geometry.

Zhu et al. (2002, 2004) overcome this problem by apply-
ing a step body force in only localised regions of uniform 
cross section. We use the same approach here by introduc-
ing an artificial region attached to the real region in the 
micro-element. Uniform body forces are applied only in 
the artificial region, in order to impose the correct pres-
sure differences over the real region. This method also 
retains the simplicity of using periodic boundary conditions 
(PBCs) in all directions in our simulations. The main draw-
back of the method is that a complicated component geom-
etry requires a similarly complicated artificial region in the 
micro-element to ensure the geometrical match necessary 
for PBCs to function (see Fig. 5). This makes the micro-
element larger than it would otherwise be and can have a 
detrimental effect on overall computational efficiency.

The magnitude of the localised step body force Fi,q 
applied at the ith boundary of the qth component is cho-
sen such that it creates a momentum flux (a pressure jump 
Φi,q) within that region that is equal and opposite to that of 
the pressure difference ∆P we wish to induce over the real 
region, i.e:

where ∆x is the extent of the localised region and ρn is the 
number density in this region. Equation (18) can be rear-
ranged in terms of the desired uniform forcing magnitude:
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