Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Ozone oxidation methods for aluminium oxide formation : application to low-voltage organic transistors

Gupta, S. and Hannah, S. and Watson, C. P. and Sutta, P. and Pedersen, R. H. and Gadegaard, N. and Gleskova, H. (2015) Ozone oxidation methods for aluminium oxide formation : application to low-voltage organic transistors. Organic Electronics, 21. pp. 132-137. ISSN 1566-1199

PDF (Gupta-etal-OE2015-ozone-oxidation-methods-for-aluminum-oxide-formation)
Gupta_etal_OE2015_ozone_oxidation_methods_for_aluminum_oxide_formation.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview


Four atmospheric pressure ozone oxidation methods were used to produce ultra-thin layers of aluminium oxide for organic thin-film transistors. They are UV/ozone oxidation in ambient (UV-AA) and dry (UV-DA) air, UV/ozone oxidation combined with high-voltage discharge-generated ozone in dry air (UV+O3-DA), and discharge-generated ozone in dry air (O3-DA). The lack of the high-energy UV photons during the O3-DA oxidation led to low relative permittivity and high leakage current density of the AlOx layer that rendered this method unsuitable for transistor dielectrics. Although this oxidation method led to the incorporation of oxygen into the film, the FTIR confirmed an increased concentration of the subsurface oxygen while the XPS showed the highest portion of the unoxidized Al among all four methods. The remaining three oxidation methods produced AlOx films with thicknesses in excess of 7 nm (2-hour oxidation time), relative permittivity between 6.61 and 7.25, and leakage current density of (1-7)x10-7 A/cm2 at 2 MV/cm, and were successfully implemented into organic thin-film transistors based on pentacene and DNTT. The presence of –OH groups in all oxides is below the detection limit, while some carbon impurities appear to be incorporated.