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Abstract 

Recent years have seen significant advances in our understanding of the genetic basis of schizophrenia. In 

particular, genome-wide approaches have suggested the involvement of many common genetic variants 

of small effect, together with a few rare variants exerting relatively large effects. While unequivocal 

identification of the relevant genes has, for the most part, remained elusive, the genes revealed as 

potential candidates can in many cases be clustered into functionally-related groups which are potentially 

open to therapeutic intervention. In this review, we summarise this information, focussing on the 

accumulating evidence that genetic dysfunction at glutamatergic synapses and post-synaptic signalling 

complexes contributes to the aetiology of the disease. In particular, there is converging support for 

involvement of post-synaptic JNK pathways in disease aetiology. An expansion of our neurobiological 

knowledge of the basis of schizophrenia is urgently needed, yet some promising novel pharmacological 

targets can already be discerned. 
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411, which has been published in final form at http://doi.org/10.1111/cge.12485. 
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Introduction  

 

Schizophrenia imposes an enormously heavy burden on sufferers, carers, and society. The disease has the 

doubly adverse characteristics of being both common and serious. Lifetime risk of developing the disease 

is around 0.8%, and from the time of first appearance of the symptoms (typically in late adolescence or 

early adulthood) the majority of patients will be unable to make a full recovery, with many committing 

suicide (1).  

 

Patients can suffer from a range of symptoms. These are typically classified as positive (in the sense of 

being additional to normal experience) such as delusions and hallucinations (most commonly auditory, 

but also including other sensory modalities); negative (in the sense of being missing from normal 

experience) such as lack of motivation, self-neglect, and social withdrawal; and cognitive, including 

impaired ability to sustain attention, deficits in working memory, and loss of cognitive flexibility. The 

range of symptoms experienced can be quite variable. 

 

Environmental factors are known to influence the risk of suffering from schizophrenia. Known risk factors 

are clustered around antenatal and perinatal periods, and include antenatal stress, malnutrition or viral 

infection, and perinatal hypoxia. These environmental risk factors interact with a substantial level of 

inherited genetic risk (that raises prevalence to around 50% in monozygotic twins). The mechanistic basis 

for these gene – environment interactions is not understood, but may become clearer once the genetic 

influences on the disease are better-characterised.  

 

Current drug treatments rely on antagonism of the D2 dopamine receptor, generally incorporating a 

spectrum of actions at other G-protein coupled receptors (GPCRs) that modify the drug’s efficacy and 

side-effect profile. Inhibition of D2 dopamine receptors produces a gradual reduction in the severity of 

positive symptoms in the majority of patients, without much improvement in negative or cognitive 

symptoms. The reduction in positive symptoms is immensely valuable, yet the lack of efficacy against 

other symptom domains, the significant proportion of patients who are treatment-resistant, and the 

widespread and unpleasant side-effect profile of the drugs, makes the discovery of improved therapeutic 

strategies of paramount importance. Rational drug development programmes based on a coherent 

understanding of genetic risk mechanisms offer the possibility of treating the neurobiological dysfunction 

that causes the disease, rather than alleviation of symptoms. As will be discussed further below, a large 

number of genes are believed to contribute to genetic risk of schizophrenia, and it will be crucial to 

identify the optimum targets for pharmacological intervention. This will need to consider both the extent 

to which modulating the target can restore function of the biochemical network to normal, and also the 

target’s pharmacological tractability. Naturally there are different opinions as to which proteins (or RNAs) 

represent viable targets for drug development; however, there are some widely-held principles that are 

supported by general experience (S1, S2) (see list in supplementary information for S- citations). Thus 

GPCRs, ion channels, membrane transporters and cytoplasmic enzymes are the most common drug 

targets at the moment, with nuclear receptors, proteases and protein kinases also successfully exploited 

for therapeutic purposes. We emphasise these classes of protein in subsequent sections. 

 

Genetics of schizophrenia 

Psychiatric genetics researchers have migrated over a period of time from cytogenetics, linkage and 

candidate gene association studies, to genome-wide association studies (GWAS) with ever-increasing 



sample sizes, and genome-wide studies of copy number variation (CNV), through to whole-exome and 

whole-genome sequencing. Genetic overlap with other psychiatric diseases, including autism spectrum 

disorders and intellectual disability, has been a notable finding. In relation to schizophrenia, cytogenetic 

studies have most notably identified a translocation disrupting the DISC1 gene as a high-penetrance risk 

factor for psychiatric illness (2). Linkage studies have reliably detected chromosomal loci linked to 

increased risk of the disease, and candidate gene studies have proposed quite a large number of 

individual genes as contributing to elevated disease risk. In many of these cases, the reported associations 

have not stood the test of replication in independent sample cohorts, although in some instances 

(mentioned below where appropriate), data from GWAS or CNV studies have supported the original 

findings. Importantly, CNV and GWAS have drawn attention to a number of new candidate genes. A few 

robust associations have been discovered, despite the fact that significance thresholds are generally 

demanding, to avoid impossibly high type I (false positive) error rates. It should be remembered that less 

attention is generally paid to the corresponding potential for type II (false negative) errors (S3), so the lack 

of a GWAS hit should in no way diminish credence in the importance of a gene, if supported by strong 

evidence from other approaches. Deep sequencing studies of complete exomes (the entire mRNA 

sequence) from patients is now revealing further sequence variations/mutations that, while rare, shed 

light on the neurobiological dysfunction that underlies the common disease. 

 

Current knowledge about the genetic basis of schizophrenia has been the subject of a number of excellent 

recent reviews (3)(S4,S5). Hence, rather than covering the same ground, the current review aims to 

highlight specifically where advances in genetic understanding are suggesting novel approaches to drug 

design and development. We focus on the genes and gene families where the genetic support is relatively 

strong, and where the possibilities for pharmacological intervention are relatively good. Hence a number 

of genes where evidence could be seen as really convincing may be beyond the scope of the review if 

there is no obvious route for drug development at present. For example, the MHC region of chromosome 

6p21-22.1 has been robustly associated with schizophrenia in GWAS, but is not obviously amenable to 

drug development according to current understanding, and therefore is not discussed here. In addition, 

by following a holistic approach, we bring forward emerging and converging neurobiological themes in 

the hope that they may illuminate the darker areas of disease aetiology.   

 

As a brief summary of the present situation, it would be fair to say that while the general features of the 

genetic landscape of schizophrenia are now known, it has proved difficult to resolve much specific detail 

(S4,S5).  Current understanding suggests that a large number of common gene variants, generally having a 

relatively small effect on disease risk individually, combine with a smaller number of rare variants, which 

individually have a much larger influence. In general, CNVs tend to increase disease risk to a much greater 

extent than individual SNPs (4-6)(S6). In addition, the effects of these inherited genetic risk factors are 

likely to be further augmented by a small number of de novo mutations unique to the affected individual. 

Hence even where susceptibility to schizophrenia seems to be strongly inherited within a family pedigree, 

the actual genetic inheritance may be quite complex. It follows that, in order to gain an overview of how 

genetic influences lead to the development of the disease, and hence how novel therapeutic approaches 

might be designed, it is essential to consider a potentially large number of genes, most likely with groups 

of them clustered in a fairly intimate functional relationship, interacting with environmental and neuro-

development factors. This is clearly no simple task, and while some patterns are emerging in terms of 

important functional gene/protein clusters, the ways in which sequence variations in specific genes 

interact to cause the disease remain to be clarified. Equally, despite the intuitive expectation that 

symptomatic variation might reflect the polygenic nature of the disease, there is little information at 



present on the relevance of individual genetic variants to specific symptom domains. It might be thought 

that, due to their relatively large effects, the genes within CNVs might be particularly informative for 

understanding disease aetiology. However, in nearly every case, the CNV affects a number of genes. 

Hence the substantial increase in risk of schizophrenia due to a particular CNV cannot be assigned 

unequivocally to a specific gene. Table 1 summarises the extent to which genes within the CNVs fit with 

our growing understanding of the patterns of neurobiological dysfunction in schizophrenia. 

 

Glimpses of patterns 

It can be argued that some definite features of the neurobiology of schizophrenia can at last be discerned 

through the swirling mists of phenotypic and genetic heterogeneity.  In general, the more reproducible 

findings from candidate gene studies have supported pharmacological and biochemical evidence that 

glutamate synapses might be particularly affected in schizophrenia (7, 8). GWAS, CNV and, very recently, 

exome sequencing studies have further strengthened this idea (4, 9-12). The relevant genes and 

supporting data are summarised in Figure 1, and detailed below. A picture of compromised post-synaptic 

signalling processes is also emerging, where the risk genes encode clusters of functionally-related 

scaffolding proteins and kinase cascades that integrate and transduce synaptic events (4, 10, 11, 13). 

Prominent among these are proteins involved in the c-Jun N-terminal kinase (JNK) signalling pathway – a 

multi-level kinase cascade involved in both physiological and pathological plasticity in neurones (14). Of 

course this may link extremely well with the evidence for impaired glutamate synaptic function. These 

results are summarised in Figure 2 and explained in more detail below, under consideration of functional 

classes of potential therapeutic target. It must be emphasised that the evidence is seldom unequivocal. A 

number of different hypotheses have been proposed to explain the heterogeneous genetic evidence as it 

emerges. However, compromised function of glutamate synapses and downstream signalling pathways is 

arguably by far the strongest unifying (or at least partially unifying) hypothesis. In the following sections 

we have attempted to sift through the abundant harvest of genetic information, to separate those grains 

of knowledge with the potential to form the seeds for future drug development. We describe how genetic 

evidence has brought us to this position, and indicate the novel therapeutic avenues that are now 

attractive for exploration. 

 

Ligand-gated ion channel receptors 

A number of studies have investigated possible association of NMDA receptor (NMDA-R) subunit genes 

SNPs with schizophrenia (e.g. S7,S8) However, where an effect has been detected, these findings have not 

always proved replicable. Overall there may be at best a hint that NMDA-R subunit gene sequence 

variations contribute to disease risk. In recent genome/exome-wide studies, patient samples were 

enriched for common GRIN2A variants (12) and rare nonsynonymous de novo GRIN2A mutations (4), 

while a missense GRIN2B variant has been detected in a patient (S9). Some cytogenetic evidence suggests 

that disruption of the GluK4 (GRIK4) kainate receptor subunit gene may be associated with schizophrenia, 

and some but not all case-control association studies support this (15). SNPs in the GRID1 gene, encoding 

the delta 1 ionotropic glutamate receptor subunit, were found to be associated with schizophrenia in two 

studies (S10,S11), and the gene is within the 10q23 duplication region that shows high penetrance for 

schizophrenia (Table 1). However, the function of delta ionotropic glutamate receptors is not clearly 

understood, so the therapeutic relevance of these findings is not clear. The scaffolding protein PSD-95 is 

highly abundant in the post-synaptic density and plays a key role in glutamatergic signalling, but there is 

no strong evidence implicating the corresponding gene in schizophrenia. However, there is evidence in 

the case of the DLG genes, which encode closely related proteins. For example, DLG1 encodes a PSD-95-

related protein involved in various scaffolding functions including AMPA and kainate receptor trafficking. 



Rare DLG1 mutations have been found in patients (11) along with microdeletions that include the DLG1 

(16, 17) (Table 1) or DLG2 (18) gene. This supports the overall concept of glutamate synapse/signalling 

dysfunction in schizophrenia, and drugs targeted at facilitating NMDA-R function have so far proved 

mildly promising (S12). With the knowledge that different types of NMDA-R (for example GRIN2A-

containing vs GRIN2B-containing) can have markedly different functions, there are as yet unexplored 

therapeutic possibilities in this area. 

 

Similarly, early association studies focussed on genes encoding subunits of the GABAA receptor did not 

produce conclusive findings. However, the presence of the GABRD gene (encoding the delta subunit) in 

the 1p36.33 duplication, and a cluster of genes encoding the alpha 5, beta 3 and gamma 3 subunits within 

the 15q11-q13 duplication, both associated with schizophrenia  (Table 1) is noteworthy. GABAA receptors 

containing alpha 5 subunits and delta subunits have been specifically linked to the regulation of  

oscillatory EEG activity (S13), which is perturbed in schizophrenia (19). The potential of GABAA receptor 

modulating drugs for treating schizophrenia might therefore be worth some further attention, although 

this particular route is quite well-travelled (20). 

 

The overall strength of evidence is quite compelling for the 7 subunit of the nicotinic acetylcholine 

receptor. There is a highly significant association of deletions at the 15q13.3 locus with schizophrenia 

(21). The CHRNA7 gene (encoding subunits found in the 7 subtype of nicotinic receptor) is one of 12 

genes within the deletion (Table 1), and is probably the strongest candidate for elevating disease risk. 

Other nicotinic receptor subunit genes (CHRNA3, CHRNA5 ) may also be implicated, from the most recent 

GWAS data (12). Some involvement of nicotinic receptors with schizophrenia is suggested by the fact that 

the majority of patients are smokers, possibly as a form of self-medication. Stimulation of nicotinic 7 

receptors acts to enhance glutamate release in areas such as the cerebral cortex, hippocampus and 

thalamus (Fig 1), and reduced levels of nicotinic 7 receptors have been noted in post-mortem studies of 

thalamic tissue from patients (S14). Clinical trials report that nicotinic 7 receptor agonists show possible 

beneficial effects on negative and cognitive symptoms (22). 

 

 Voltage-gated ion channels 

Ca2+ channels are clearly important for many aspects of neuronal excitability and communication. N-type 
Ca2+ channels are predominantly presynaptic (Figure 1), although not only on glutamatergic terminals, 
while T-type and L-type channels are widespread with a mainly post-synaptic location, and are not 

predicted to affect any specific neurotransmitter system preferentially. The CACNA1C gene encodes the 
pore-forming 1 subunit which, along with accessory 2, -1 and β subunits, produces L-type (Cav1.2) 
voltage-dependent Ca2+ channels. Sequence variations in the CACNA1C gene, most prominently linked to 
Timothy Syndrome, have been robustly associated with bipolar disorder, and now seem to be 

reproducibly associated with schizophrenia as well (12, 23, 24) (S16,S16). Sequence variations in the 
gene encoding the channel’s β subunit – CACNB2 – may also show significant genome-wide association 
with schizophrenia (12, 25) (S17). Rare mutations in voltage-gated calcium ion channel genes, including 
CACNA1C, were also found in another recent exome sequencing study (11). Similar evidence is now being 
reported for other closely-related genes. De novo mutations have been detected in the CACNA1I, 
encoding the alpha subunit of the T-type voltage gated calcium channel (S18), a gene which has also been 
identified in the most recent GWAS (12), and deletions close to the CACNA1B gene, encoding the 1 

subunit of N-type (Cav2.2) Ca2+ channels, have been detected at higher frequency in patients compared to 
controls (9). The genetic evidence for voltage-dependent Ca2+ channel impairment is therefore reasonably 
convincing at the moment. However, our neurobiological understanding of the nature of this impairment 
in schizophrenia, and how it might be ameliorated, has not kept pace with the genetic advances.  



Nevertheless, small molecules targeting voltage-dependent Ca2+ channels are under development for 
epilepsy and pain, in addition to cardiovascular applications, so there is definite potential here. 
 

G-protein-coupled receptors (GPCRs) 

GPCRs are of course attractive as novel targets for drug development. Candidate gene studies focussed on 

the mGlu3 (GRM3) metabotropic glutamate receptor have produced conflicting results, and no clear 

picture has emerged, although an association signal was recently detected by GWAS (12). Clinical trials of 

a mGlu2/3 agonist looked promising initially (26) but are still not conclusive in the light of follow-on trials 

(27). In the case of the mGlu5 (GRM5) metabotropic glutamate receptor, a rare mutation has been noted 

in familial schizophrenia (28).  

 

Rare microduplications involving the VIP/PACAP VPAC2 receptor (VIPR2) have been detected at 

significantly higher frequency in patients compared to control subjects (29, 30) (S19), but see also(31). 

The VPAC2 receptor  can couple to various signalling processes, most commonly via adenyl cyclase and 

phospholipase C (S20). There is no obvious reason why increased gene dosage at this receptor should 

increase risk of schizophrenia, but better understanding of the neurobiology of VPAC2 and its relationship 

to psychiatric disease might well lead to novel therapeutic approaches. We note also that the type I 

CRH/CRF receptor gene (CRHR1) is located at the site of the rare 17q21.31 microduplication detected in 

some patients with schizophrenia (5). Interneurones expressing both VIP and CRF (S21) may play an 

important role in the regulation of prefrontal cortex pyramidal neurones, so a pharmacological strategy 

based on these neuromodulatory GPCRs deserves consideration. 

 

Type I transmembrane proteins  

The least ambiguous genetic evidence for a role in schizophrenia concerns the neurexin 1 (NRXN1) gene. 

Deletions encompassing exons of the NRXN1 gene are found at higher frequencies in patient samples 

than in control groups (9, 29), and there is the possibility that rare mutations could also play a role as well 

as functional deletions (32)(S9). It is interesting that a possible signal for a trans-synaptic binding partner 

of neurexin 1 – neuroligin 4 (encoded by the NLGN4 gene) - has been detected in GWAS (12, 25) (Figure 

2). Neuroligin-neurexin binding spans the synaptic gap (Figure 1), contributing to synapse development 

and maintenance (S22). A loss of this interaction can be rationalised in terms of theories of synaptic 

dysfunction in schizophrenia. Although maybe not the simplest drug target, there is great 

diversity/specificity in the neurexin-neuroligin binding interaction (S23) that may be open to exploitation 

pharmacologically. 

 

The low-density lipoprotein (LDL) receptor gene family includes the low-density lipoprotein receptor-

related proteins 1 and 1B (LRP1 and LRP1B) genes. They encode closely-related type I transmembrane 

glycoproteins, best-known for a role in cholesterol trafficking and ApoE binding. However, they also  

interact with NMDA-Rs via the post-synaptic density (S24), and act to suppress JNK activity (S25). One of 

the earliest exome sequencing studies in schizophrenia identified a de novo mutation in LRP1 in a 

proband (33). The LRP1 locus has also been detected in recent GWAS (12). It is interesting that non-

synonymous sequence variations in LRP1B were detected in samples from patients but not control 

subjects in another exome sequencing study (34), and also in a family with a high incidence of 

schizophrenia (28). These intriguing results need neurobiological support to underpin a potential role in 

schizophrenia aetiology, but they may in the future provide a foundation for novel therapeutic 

approaches. 

 



ERBB4 is a receptor tyrosine kinase belonging to the epidermal growth receptor family. Both ERBB4 and 

its ligand – neuregulin, have been the focus of considerable attention in candidate gene association 

studies (S26).  In addition, the Neuregulin 3 gene (NRG3) is within the 10q23 duplication region associated 

with schizophrenia (5). In GWAS, ERBB4 SNPs generally show some degree of association without 

achieving genome-wide levels of significance(25, 35), yet rare deletions encompassing the ERBB4 gene 

have been detected in patient samples (18, 21). Small molecule inhibitors such as gefitinib are active on 

ERBB4 without being selective, yet show the potential for modulating ERBB4 signalling in schizophrenia. 

 

MERTK – a type I transmembrane tyrosine kinase which has recently been implicated in synapse 

elimination (S27), can activate a variety of signalling pathways, including Rac, ERK and JNK (S28). 

Duplications including MERTK that cosegregate with schizophrenia have recently been identified at a 

schizophrenia-linked locus (36)(S29). As with ERBB4, small molecule inhibitors are being developed (S30), 

so again there is potential in this route if the connection between MERTK and schizophrenia was 

consolidated. 

 

Transporters  

The SLC1A1 gene encodes a glutamate transporter (EAAC1 / EAAT3) responsible for the uptake of synaptic 

glutamate into neurones (Fig 1). A deletion including exons of the SLC1A1 gene was enriched in the 

patient group of a large case-control sample (37), cosegregated with schizophrenia in a Palauan 

family(38), and has been found in another patient with schizophrenia . Similarly, a rare deletion of 4 genes 

including another glutamate transporter gene, SLC1A3, was detected in a patient cohort (18, 36). This 

might be tentative evidence that a developmental deficit in glutamate uptake may predispose towards 

schizophrenia. 

 

Phosphodiesterases 

PDE4B is a phosphodiesterase involved in the termination of cAMP signalling. PDE4B is an interacting 

partner of DISC1, and a chromosomal translocation disrupting PDE4B has been noted in subjects with 

schizophrenia (39). While there is a general issue of nausea with PDE4 inhibitors, isoform-selective agents 

may have considerable promise. 

 

Rho GTPases 

Small GTPases of the Rho family play an important role in the CNS in the regulation of neuronal 

morphology and axon growth. Prominent members of the family such as RhoA, RhoB, Rac 1-3 and cdc42 

are all highly expressed in the brain and are stimulated by synaptic activity (40, 41). Their activity is tightly 

regulated by GTPase activating proteins (GAPs), guanine nucleotide exchange factors (GEFs) and guanine 

dissociation inhibitors (GDIs). 

 

The GTPases themselves have not shown up prominently in any genetic studies, with the possible 

exception that the there is a tentative GWAS signal relating to the control of expression of the CDC42 

gene (S31) (Figure 2). However, there is a variety of suggestive evidence relating to Rho GTPase regulatory 

proteins. Potentially pathogenic sequence variations in the p164-RhoGEF (ARHGEF17) and TIAM2 genes 

were detected in samples from patients but not control subjects in an exome sequencing study (34). 

TIAM2 is interesting, as SNPs in this gene were also detected in a GWAS (S32). The TIAM2 protein is is a 

Rac GEF, is part of the DISC1 interactome (42) and also binds NRXN1 (S33) – one of the genes most-

unequivocally associated with schizophrenia, as noted above (Fig 1). TIAM2 is also interesting in that it 

has a remarkable forebrain-specific pattern of expression (S34). Evidence suggests that TIAM2 functions 



mainly as an activator of Rac signalling. Furthermore, the CYFIP1 gene – one of few genes located within 

the 15q11.2 deletion region (Table 1) – encodes cytoplasmic FMR1 interacting protein 1/Rac1-associated 

protein 1, which interacts with Rac1 as part of a complex regulating synaptic morphology and axon 

growth (S35). An intronic SNP in the CYFIP1 gene also shows association with schizophrenia (43). Thus 

there is a cluster of genetic evidence suggesting possible dysfunction in Rac signalling. While it probably  

also has post-synaptic actions, Rac1 has a prominent role in axon growth and presynaptic vesicle release 

(S36,S37,S38), and hence we show it presynaptically in Figure 1. 

 

Three further GEFs also deserve mention. A significant association signal and possible rare mutations in 

patients have also been detected for the KALRN gene (S39) – encoding kalirin – a Rho/Rac1 GEF that is 

located at synapses and interacts with DLG1 and DISC1, while a de novo mutation in DOCK1 (DOCK180 - a 

Rho family GEF) was detected in a patient with schizophrenia (44). DOCK180 is involved in axon growth 

and synapse stabilisation, and interacts with adaptor/scaffold proteins such as NCK1 and CRKL to 

transduce signalling information (S40) (Figure 2). Equally, the gene encoding a GEF for a related GTPase 

(Rap2) - PDZ-GEF1 (RAPGEF2) is close to microdeletions found in patients (9) and is within a duplication 

segregating with disease in an Afrikaner family (45). Of course these very rare genetic events do not in 

themselves demonstrate a causal role in schizophrenia aetiology. However they are consistent with a 

picture of GTPase signalling impairment in the disease. 

  

Indeed, there is also noteworthy evidence implicating Rho GAPs in genetic risk for schizophrenia. The 

ARHGAP11B gene lies within the 15q13.3 deletion locus (29), but unfortunately the  function of this gene 

is poorly characterised. Microduplications (3p25) in the region of the SRGAP3 (ARHGAP14) gene, which 

encodes another Rac1 modulator, have been reported to cosegregate with schizophrenia and related 

disorders (S41). Duplications in this region were also detected in patient samples in a genome-wide study 

(46). Apart from its action as a Rac suppressor, SRGAP3 is a direct TNIK interactor (see next section), and 

hence potentially linked to the DISC1 interactome (42). In addition, suggestive evidence involving the 

closely related ARHGAP4 gene, encoding SRGAP4, was obtained in a recent GWAS (47). The ARHGAP1 

(cdc42GAP) locus has also been detected in recent GWAS (12)(S42). The gene encoding Brain-Specific Rho 

GTPase-activating protein RICS/GRIT/GC-GAP (ARHGAP32), a Rho GAP (S43), was found to be associated 

with schizophrenia in a candidate gene study (48). RICS/GRIT binds to CRKL (a scaffold protein whose gene 

lies within the 22q11 deletion region; Figure 2, and see below), the adaptor protein NCK1, as well as 

CDC42, and is activated by NMDA-R stimulation (S44). The Ras GAP SYNGAP1 may also be important. 

Enrichment of synaptic function genes (including SYNGAP1), was found in another recent exome 

sequencing study searching for rare mutations (11) and a de novo mutation in SYNGAP1 was detected in a 

patient with schizophrenia (44). 

 

Rho signalling in general is pharmacologically tractable, due to the diversity of regulatory molecules, their 

relative functional specificity, and the possibilities for either reducing or increasing pathway activity with 

small molecule inhibitors by targetting either GEFs or GAPs. On the other hand, the plethora of 

interactions and feedback loops can complicate the delivery of a sustained therapeutic effect. However, 

small molecule inhibitors of Rho GTPase signalling are currently being developed (S45,S46), and if the 

exact details of the dysfunction in these pathways in schizophrenia could be determined, the therapeutic 

potential might be considerable. 

 

Kinases and phosphatases 



Rac1 can activate a number of downstream signalling processes, but prominent among them are the 

Rac/Cdc42/p21-activated kinases (PAKs). Three PAK genes are implicated in genetic susceptibility to 

schizophrenia: microdeletions at a locus including PAK2 have been observed at increased frequency in 

patient cohorts (16, 17, 29), rare PAK7 duplications have also been detected (S47)(46), and common 

variants at the PAK6 locus have been detected in recent GWAS(12). This supports the concept of a 

dysfunctional Kalirin/SRGAP3/Tiam2 – Rac -PAK2/PAK6/PAK7 pathway, although whether the end result is 

too little or too much activity is not clear. While not extensively investigated, there is some evidence of a 

presynaptic role for PAK2 and PAK7 (also known as PAK5) (S48,S49,S50). Inhibitors of PAKs have recently 

been reported to ameliorate neurobiological deficits in mice with compromised Disc1 function(49), so 

there is support for the idea that this could be a useful way forward. 

 

A rare duplication encompassing the PRKCD gene, encoding the delta isoform of protein kinase C, and a 

rare non-synonymous sequence variant in the PRKCB gene, encoding the beta isoform of protein kinase C, 

have been detected in patient samples (18, 44). An significant association close to the Nu type Protein 

Kinase C (PRKD3) gene has also been detected (25), so there is a little evidence of PKC isoform 

involvement in the disease, that at present is far from being conclusive. 

 

TNIK (TRAF2 and NCK-interacting kinase) is a MAP kinase kinase kinase kinase (MAP4K) originally linked to 

JNK signalling (S51) and to Rap2 effects (S52) via a NCK1 interaction (Figure 2) but also known to interact 

with DISC1 (42). TNIK plays a role in glutamatergic synapse regulation and cognitive processes (50-52). A 

GWAS highlighted TNIK SNPs as potentially associated with metabolic hypofrontality in patients with 

schizophrenia (53) (S53), and there has been some signal at the TNIK locus in other GWAS studies (35). 

Interestingly, the NCK1 locus has also been detected in recent GWAS(12). Thus the biochemical, 

neurobiological and genetic data together are sufficient to make TNIK a potentially interesting target. 

 

Thousand and one kinase type 2 (TAOK2, MAP3K17) is now of substantial interest with respect to novel 

approaches to treating schizophrenia. Strong evidence now exists that microduplications at 16p11.2 

substantially increase risk of schizophrenia (OR ~ 8) (54, 55). 16p11.2 duplications are also implicated in 

childhood onset schizophrenia (56). Of the roughly 30 genes within the duplicated region, the prime 

candidate is TAOK2, since a common variant located within this gene is associated with schizophrenia in 

GWAS (OR ~ = 1.1) (12, 57). TAOK2 is a MAP kinase kinase kinase (MAP3K) mediating activation of p38 

and JNK, best-characterised for its role in immune responses. While p38 signalling is not compelling 

implicated in schizophrenia, JNK signalling is starting to look very interesting (Figure 2). It may be relevant 

that a rare de novo deletion including the closely-related TAOK3 gene has also recently been implicated in 

schizophrenia (S54). 

 

Another MAP3K, TGF-beta activated kinase 1 (TAK1 / MAP3K7) is similar to TAOK2 in that it is involved in 

the activation of p38, JNK and also NFkB signalling in many cell types. While there is no genetic evidence 

at present implicating the TAK1 gene in schizophrenia risk, TAK1 interacts directly with TAOK2 (S55) and 

TNIK (S56). In addition, the DUSP14 gene, which encodes a dual-specificity phosphatase (MKP6) that  

dephosphorylates TAK1 is located within the 17q12 deletion/duplication region associated with 

schizophrenia (S57) (Table 1). 

 

STK11, also known as LKB1, is a kinase that is deficient in Peutz–Jeghers syndrome. A rare duplication in 

the gene has been found in patients (58). There is also some evidence from another small study for CNV 

association with schizophrenia at this locus (S58). AMP-activated protein kinase (AMPK), which is a major 



substrate of LKB1, monitors cellular energy status, and is best-known as a regulator of insulin sensitivity. 

AMPK is composed of a catalytic alpha subunit, and non-catalytic beta and gamma subunits. PRKAB2 

(1q21) encodes the beta2 regulatory subunit, and a deletion at this locus has been noted in patients 

(Table 1) (29, 59). Similarly, a rare PRKAG2 (gamma2 subunit) deletion has been identified in a patient 

cohort (18), so together this could be viewed as accumulating evidence for dysfunctional LKB1-AMPK 

signalling in some patients. In fact, AMPK can be activated by both STK11 and TAK1 (S59), and so 

represents a possible point of convergence for these two pathways (Figure 2). 

 

A de novo mutation in another MAP3K mediator of p38 and JNK signalling - ASK1(MAP3K5) - was recently 

reported in a patient with schizophrenia (44). This is of interest as a missense mutation in the PPEF2 gene 

(encoding the protein phosphatase with EF-hand calcium binding domain type 2) was recently identified 

in a schizophrenia pedigree (28). PPEF2 reduces JNK signalling by suppressing ASK1 activation (S60). 

Hence the evidence from these mutations is consistent with the importance of upstream JNK pathway 

components for schizophrenia. 

 

A further kinase involved in JNK signalling - vaccinia-related kinase 2 (VRK2) - is also implicated in 

schizophrenia from GWAS data (OR ~ 1.1) (12, 60, 61), and is known to interact with TAK1 and the MAP2K 

Map kinase kinase 7 (MKK7) (S61,S62), one of two MAP2Ks that control JNK activation, derived from the 

MAP2K7 gene. In fact we recently showed that common variants in the MAP2K7 gene were associated 

with schizophrenia in two separate cohorts, with one of the largest effect sizes known for a common 

variant (OR ~ 1.9) (62). There is some supportive evidence from cytogenetic  and CNV studies, in that an 

unconfirmed report suggested that chromosomal rearrangement in this region may represent a high 

penetrance site for schizophrenia (S63), two studies found nearby markers to show association or linkage 

with schizophrenia in early genome-wide scans (S64,S65), while a large de novo duplication including this 

gene was found in a small patient cohort (63). The function of MKK7 in neurones is not particularly well 

understood, but it contributes to post-synaptic signalling processes and also to the regulation of axonal 

growth (14, 64). A duplication of the MAP2K4 gene, encoding the other JNK-activating MAP2K (MKK4), 

has been noted in an extended schizophrenia pedigree (S66). 

  

Thus there are signs of disease-relevant genetic variability at multiple points upstream in the JNK 

signalling pathway. Targetting the JNK pathway in schizophrenia might initially seem risky, due to its 

contribution to many physiological and pathological processes in many different tissues, and hence the 

danger of serious side effects. However, in contrast to other MAP kinases, expression of JNKs in the brain 

shows some degree of preferential localisation to cortical, hippocampal and thalamic areas (65)(S67). 

Furthermore, there is a great deal of diversity, particularly at the level of MAP3Ks, MAP4Ks and 

phosphatases, and the prospects for an adequate level of selectivity seem good if the neurobiology of 

pathway dysfunction can be understood sufficiently well. The multiple interactions and feedback loops 

characteristic of MAP kinase signalling pathways (66)(S68) mean that this will be particularly important for 

successful therapeutic exploitation. Despite the reduced scope for functional selectivity at the level of 

JNKs, drugs targeting JNKs are already in development for other therapeutic areas (S69). 

 

Functional implications 

It will be apparent from the preceding sections that both RAC1 and TAK1 interact directly with the protein 

products of many schizophrenia risk genes, while not themselves being genetically implicated in 

schizophrenia (Figure 3).  Their position as hubs within a potentially dysfunctional network may make 

them especially attractive as target points to restore normal function. Small molecule inhibitors of GEF-



Rho GTPase interactions are being developed, so pharmacological manipulation of Rac GTPases is not an 

insurmountable problem. Similarly, selective inhibitors of TAK1 exist (S70), although it is not clear of 

course whether a potential drug for schizophrenia should reduce or increase activity. Thus these targets 

are tractable, should further work establish their validity as a way of restoring functional deficits.  

 

Translational implications 

Modelling the aetiology of a polygenic disease in rodents, in order to understand disease neurobiology 

better, and explore novel therapeutic ideas, is clearly going to be a challenge. At first sight, reproducing 

one of the high penetrance CNVs in mice by genetic manipulation of the syntenic region would seem like 

a promising strategy to reproduce aspects of schizophrenia. However, penetrance is incomplete for all 

CNVs (5)(S71), suggesting that even at a simplistic level, not all GM mice would be expected to show a 

relevant phenotype. There is also the specific issue that these CNVs are typically linked to intellectual 

disability as well as schizophrenia. Since the symptom domains of schizophrenia that are most reliably 

modelled in mice are the cognitive impairments (67), it will always be impossible to ascribe deficits 

observed, for example in mice reproducing the 22q11 deletion, to something related to schizophrenia 

rather than to a fundamental cognitive impairment. Nevertheless, there is interest in the extent to which 

mouse models of 22q11 deletion syndrome show phenotypes that can be related to schizophrenia 

(S72,S73). Mice reproducing the 15q13.3 microdeletion (S74) and the 16p11.2 duplication (S75) have 

been generated, and should be investigated for disease-relevant phenotypes, using translational models 

and assays (67). For studies at the cellular level, induced pluripotent stem cells (iPSCs) of course have 

substantial translational promise as well. 

 

 

Conclusions 

It will be evident from the above that, despite the general lack of overwhelming evidence implicating 

individual genes in disease risk, a picture is emerging that is consistent with dysfunctional glutamatergic 

signalling in schizophrenia. In many ways this should not come as a surprise, given our current (albeit 

imperfect) understanding of the neurobiology of the disease. In the future, hypothesis-driven epistatic 

studies should be highly informative for understanding how the individual genetic elements combine to 

elevate disease risk. Importantly, the genetic evidence does suggest possible avenues for therapeutic 

investigation. Hypothesis-driven neurobiology studies are urgently required to explore these possibilities, 

since only once the nature and direction of neurochemical dysfunction is understood can appropriate 

treatment strategies be refined. In recent years, progress in the genetic aspects of schizophrenia has 

exceeded progress in the neurobiological aspects, and understanding in both areas is required for the 

development of improved treatments.  

 

 



Figure legends 

 

Figure 1 

Schematic diagram showing genes with roles at glutamatergic synapses that are implicated in risk for 

schizophrenia. Main panel illustrates interrelationships between the products of these genes, while 

corresponding dark shading in small panels indicates evidence from candidate gene studies, GWAS, CNV 

studies or exome sequencing (see text for further details). 

 

Figure 2 

Schematic diagram showing genes with roles in post-synaptic JNK signalling that are implicated in risk for 

schizophrenia. Main panel illustrates interrelationships between the products of these genes, while 

corresponding dark shading in small panels indicates evidence from candidate gene studies, GWAS, CNV 

studies or exome sequencing (see text for further details). 

 

Figure 3 

Schematic diagram summarising protein interactions of RAC1 and TAK1 with relevance for schizophrenia. 

Symbols indicate whether current knowledge suggests the influence of common or rare variants 

(although in the majority of cases functional mutations have not yet been identified, and so this is not 

totally unequivocal). See text for details. 

 

Table 1 

Summary of CNVs robustly associated with schizophrenia. In each case, genes within the CNV that are 

functionally related either to glutamate synapses or post-synaptic kinase signalling are highlighted, along 

with other genes of interest. We include genes of the phosphatidylinositol glycan biosynthesis (PIG) family 

in the latter category. These genes contribute to the synthesis of glycosylphosphatidylinositol, which 

anchors a variety of proteins to the cell surface. PIG genes have recently been linked to other CNS 

disorders (S76,S77). There are 21 PIG genes, so although there is no direct evidence linking 

glycosylphosphatidylinositol anchors to schizophrenia, the presence of 4 of these genes within the CNVs 

associated with schizophrenia is remarkable. WBS: Williams-Beuren syndrome; Ang/PW: Angelman 

syndrome, Prader-Willi syndrome. 

 



Table 1 

 

 Citation No. of 

genes 

Candidate gene 

Glutamate 

synapse  

Candidate gene 

Post-synaptic 

signalling 

Other notable 

gene 

 

1p36.33 duplication (37) 5  PRKCZ GABRD 

1q21.1 deletion (29, 31, 59) ~14  PRKAB2 PDZK1 

2p16.3 deletion  (S78) 1 NRXN1   

2q13 duplication (36, 68) 10  MERTK  

3q29 deletion (5, 17, 29) 19 DLG1, PAK2  

 

PIGX, PIGZ 

7q11.23 (WBS ) 

duplication 

(5, 31, 69)  25 STX1A, LIMK1 FZD9  

7q36.3 duplication (30) 1  VIPR2  

9p11.2 deletion (37) 2 SLC1A1   

10q23 duplication (5)  GRID1 NRG3  

15q11.2 deletion (29)(S79) ~4 CYFIP1   

15q11-q13 

duplication (Ang/PW) 

(5, 31)(S80) 15   GABRA5, 

GABRB3, GABRG3 

15q13.3 deletion (29) 12 CHRNA7 ARHGAP11B  

16p13.11 duplication (5) 8   NDE1 

16p12.1 deletion (37) 7    

16p11.2 distal 

deletion 

(37)(S81) 10  LAT  

16p11.2 duplication (55) 29  TAOK2 KCTD13,  

MAPK3 (ERK1) 

17p12 deletion (S79) 10   PIGL 

17q12 del/dupl (31)(S57) 18  DUSP14 PIGW, LHX1 

17q21.31 dupl (5) 18   CRHR1 

22q11 deletion (5)(S82,S83) 35-60  CRKL, TXNRD2 

 

COMT, PIK4CA, 

PRODH, DGCR8 
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