
The influence of inertia and contact angle on the instability of partially wetting liquid

strips. A numerical analysis study

Sebastián Ubal,1, a) Paul Grassia,2, b) Diego M. Campana,1, c) Maŕıa D. Giavedoni,1, d)
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I. INTRODUCTION

Free surface flow instabilities have been, and are, the subject of very active research.

The presence of contact lines introduces an additional difficulty in the analysis of these

phenomena. This paper addresses in particular the instability of a slender strip of fluid that

is deposited on a flat solid surface. Liquid ribbons like these can be seen in everyday life,

as on car windscreens or in breaking uniform fluid films. Their study is also important in

applications like Direct-Write1–4, printed electronics5 and material functionalisation6, which

are different kinds of micro– and nano–fluidics applications7. The knowledge of the stability

properties of this system is of fundamental importance, either because the breakup into

droplets is an unwanted phenomenon or because a regular rupture pattern is desired. It is

also a scientifically interesting problem in its own right.

The pioneering work of Davis 8 , based on a kinetic energy balance, reveals that fluid

rivulets with fixed contact lines are stable if θ < π/2 (θ being the contact angle), while

if θ > π/2 only perturbations of a wave number (k) larger than a critical value (kC) are

stable. Moreover, when the contact line is free to move and θ is a smooth function of the

contact line speed, Davis showed that there always exists a critical wave number above which

perturbations are stable.

Subsequent works have found that the existence of axial flows9,10 and the influence of

gravity11,12 both have a stabilising effect. The stability of liquid threads deposited in V-

shaped substrates was studied by Langbein 13 , Roy and Schwartz 14 , Yang and Homsy 15 .

The paper by Diez, González, and Kondic 12 provides a detailed account of linear stability

analyses carried out in previous works. They also derived a lubrication based equation for

the evolution of the film thickness, which accounts for the gravity forces and the liquid-

solid interaction effects through the disjoining pressure. In this sense, the model can be

used to simulate both macroscopic and microscopic fluid rivulets. In addition to a linear

stability analysis of this new model, they also conducted numerical simulations of infinite

and finite fluid strips by solving a lubrication-based evolution equation. For infinite strips,

these authors found that the wavelength with maximum growth rate predicted by the linear

stability analysis coincides with the distance between droplets resulting from the non-linear

simulations. Similar conclusions hold for finite strips, at least in the explored range of

parameters.
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Experimental studies of the problem were presented by Schiaffino and Sonin 16 , Duin-

eveld 17 , González et al. 18 and Kondic et al. 6 . Schiaffino and Sonin 16 worked with strips

of molten wax deposited in a cool substrate to freeze the contact line, finding a reasonable

agreement with Davis’s theory. Kondic et al. 6 analysed the stability of nano-strips of nickel

by using a pulsed laser to melt the metal. They found that the time and length scales

measured in the experiments agree reasonably well with predictions of an isothermal hydro-

dynamic model. The experiments also show that, for thin lines, finite size effects produced

at the ends of the filament are weak and the instability progresses almost uniformly along

its length; by contrast, for thicker strips border effects have stronger influence on the evo-

lution. These observations are consistent with those of González et al. 18 , who studied the

instability of 0.3–1 mm thick and 5 cm long strips under partially wetting conditions and

observed that the instability always starts at the ends of the filament and progress toward

its central region.

This paper focuses on one aspect of the problem not explored until now: the influence of

inertia on the stability of the system, particularly for large contact angles. In spite of the

small cross section of the filaments that are relevant to, say, printed electronics applications,

the use of fluids of particularly low viscosity or/and large density raise the question of

whether or not it is a valid approximation to ignore this effect. We also compare our results

with those from previous works. Our model considers a fragment of a Newtonian liquid

thread, whose shape repeats periodically on both sides of the modelled segment. Physico-

chemical properties are assumed constant, as well as the dynamic contact angle (which equals

the static one). The contact line singularity is relieved by a Navier’s slip condition19. The

governing equations are solved numerically by the Finite Element Method, combined with

an Arbitrary Lagrangian-Eulerian technique20, that allows us to follow the time evolution

of the liquid thread after an initial perturbation until late stages of the evolution, where the

filament breaks into droplets.

II. PHYSICAL MODEL

A filament of a Newtonian fluid with constant properties (density ρ, viscosity µ and

surface tension σ) rests on a flat solid surface (see Fig. 1). The surrounding air is calm and

regarded as inviscid; its constant pressure is taken as the reference pressure of the system

3



R

θ
A

w

h

xz

y

liquid

substrate

FIG. 1. Sketch of the domain, the coordinate system and some geometric definitions.

and arbitrarily set to zero. In an undisturbed state, the rivulet cross section area (A) is

constant, and the contact angle at the triple line solid–liquid–gas is θ, assumed also constant.

We define R as the curvature radius that the rivulet should have in a static configuration in

the absence of gravity effects

A = R2

(

θ −
sin 2θ

2

)

. (1)

In order to study the stability of the thread of fluid, we impose an axial sinusoidal

perturbation to its radius, whose amplitude is B and wave number is k, but taking into

consideration that the volume of the original strip of fluid is preserved. We analyse the time

evolution on a fragment of the rivulet of length π/k, i.e. half a wavelength of the initial

perturbation. The motion of the liquid is governed by the equations of Navier-Stokes and

continuity

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p+∇ · τ + ρg, (2)

∇ · v = 0, (3)

τ = 2µD being the viscous part of the stress tensor (T), D = 1/2
[

∇v + (∇v)T
]

the strain

rate tensor and g = −gez the acceleration of gravity.

The liquid–air interface is a material surface, therefore the following kinematic condition

applies

(v − ẋFS) · n = 0, (4)

n being the external unit normal vector and ẋFS the velocity of the free surface. Surface
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tension exerts a normal stress at the liquid–air interface

n ·T = σκn, (5)

κ = −∇S ·n being the curvature of the free surface, ∇S = IS ·∇ the surface gradient operator

and IS = I− nn the surface identity tensor.

At both ends of the liquid thread (x = 0 and x = π/k) symmetry conditions are applied,

both for the velocity field and the shape of the free surface.

On the liquid–solid interface, the no-slip condition (v = 0) is applied, except on a narrow

region close to the moving contact line. On this narrow region, a Navier’s slip condition21

is employed to relieve the stress singularity at the contact line19

n ·T · t = −
µ

LS

t · v, (6)

where t is any unit vector tangent to the solid–liquid interface and LS is the slip-length, a

phenomenological parameter that can be interpreted as the distance down into the substrate

at which the extrapolated velocity profile becomes zero. Besides, since the solid substrate is

impermeable, the normal component of the velocity is zero, v · ez = 0.

At the moving contact line, the contact angle (θ) needs to be prescribed.

µ · ez = − sin θ, (7)

µ being a unit vector normal to the contact line and tangent to the free surface.

We proceed now to make the stated problem dimensionless. Lengths are scaled with R,

velocities with σ/µ, time with Rµ/σ and stresses with σ/R. The dimensionless versions of

eqs. 1, 2, 5 and 6 are

Â =
A

R2
= θ −

sin 2θ

2
, (8)

La

(

∂v̂

∂t̂
+ v̂ · ∇̂v̂

)

= −∇̂p̂+ ∇̂ · τ̂ −Boez, (9)

n · T̂ = κ̂n, (10)

and

n · T̂ · t = −
1

L
t · v̂, (11)
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where La = ρσR/µ2 is the Laplace number, Bo = ρgR2/σ is the Bond number and L =

LS/R is the dimensionless slip-length. Equations 3 and 4 read the same, but replacing

operators and variables by their dimensionless counterparts. Notice that the dimensionless

extent of the domain along the x̂-axis is π/k̂.

In the next section we explain briefly the numerical technique employed to solve the

governing equations stated above.

III. NUMERICAL METHOD

The equations modelling the time evolution of the liquid thread, eqs. 9 and 3, along

with the boundary conditions stated in the previous section, were solved numerically by

the Finite Element Method (FEM). Notice that the domain where equations are solved is

a priori unknown and changes with time. There are several numerical techniques aimed

at tackling free boundary problems like this, traditionally clasified as “interface capturing”

[e.g. Volume of Fluid22,23, Level-Set24,25 and Diffuse-Interface26,27] and “interface tracking”

[e.g. Lagrangian28,29 and Arbitrary Lagrangian-Eulerian30–33 techniques] methods.

In this paper we employ an Arbitrary Lagrangian Eulerian (ALE) formulation embedded

in the FEM software COMSOL Multiphysics34. In ALE techniques (and in Lagrangian

techniques as well) the numerical mesh follows and adapts to the distorting domain (the

liquid rivulet in our case), but grid points do not necessarily follow material points. In

particular, we use the so-termed “Winslow smoothing method”35, which specifies that the

initial position, X̂(x̂, t̂), of mesh points currently situated at x̂, is governed by the equation

∇̂
2X̂ = 0. (12)

The boundary conditions at the free surface for eq. 12 are obtained from the application of

the Lagrange multipliers technique36 to eq. 4. The remaining boundary conditions are zero

normal derivatives (∂X̂/∂n = n ·∇̂X̂ = 0) except where essential boundary conditions apply

(at the solid substrate Ẑ = ẑ = 0, at the symmetry planes X̂ = x̂ = 0 and X̂ = x̂ = π/k̂).

COMSOL solves eqs. 9, 3 and 12 along with their boundary conditions by means of the

Galerkin/FEM. The domain is discretised in an unstructured mesh of tetrahedra. Velocities

and space coordinates are approximated by quadratic Lagrangian basis functions, while

pressure is interpolated by linear Lagrangian basis functions. A variable order, totally
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implicit, finite difference scheme is employed for time discretisation. Newton iteration is

used to solve the resulting set of non-linear algebraic equations. A more detailed description

of the numerical technique and its validation can be found in Ubal et al. 37 , where the authors

study the deposition of a line of fluid on a plane substrate, rather than the stability of an

already deposited filament, as is the case in this work.

A. The setting up of the numerical experiments

As mentioned in previous sections, the aim of this work is to study the stability of a thread

of fluid deposited on a flat solid substrate by direct numerical simulation. Each numerical

experiment starts with the fluid at rest, with the shape of the fluid strip possessing an

initial sinusoidal perturbation to its radius, the perturbation wavelength being 2π/k̂ and its

amplitude being B̂. In this work we have employed a value of B̂ = 0.01. From this initial

condition, the simulation evolves in time, and two different behaviours develop, depending

on the set of parameters employed: a stable time evolution, or an unstable one. In the first

case, the perturbation decays and finally a straight rivulet is observed. In the second case,

the perturbation grows and the free surface evolves towards a rupture pattern.

The main parameters of the problem are θ (or equivalently Â), La, Bo and k̂. In addition,

there are other parameters that need to be specified, including the mesh size, the width of

the region (on the substrate, adjacent to the contact line) where the slip condition applies,

and the value of the slip-length (L). The simulations presented in this paper were carried

out for L = 0.05, a width for the slip region equal to 5% of the strip local width (which

changes in time) and a mesh whose elements, at t̂ = 0, vary from a minimum size of 0.05

(near the contact line) to a maximum size of 0.8 (near the apex of the filament, for those

cases with a large θ). We carried out several tests aimed to study the sensitivity of the

results to these parameters. For θ = π/6, La = 4.11, Bo = 0.132 and k̂ = 1.2 we observed

that the linear growth rate (α, see definition in eq. (13)): (a) varies less than 5% when L

changes from 0.005 to 0.5, for a slip region of 5% of the local strip width; (b) varies less than

10% when the slip region changes from 1% to 10% of the local strip width, for L = 0.05.

We also observed that the critical wave number determined (k̂C) is insensitive to either of

these parameters. Independence of the results on the mesh size was verified as well. Finally,

we successfully compared our numerical results against theoretical predictions from other
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authors, as will be seen in sec. IVA.

IV. RESULTS

A. Comparison with previous works

In order to assess the validity and capabilities of our model, we carried out a series of

simulations aimed to compare our results with those from other authors.

Figure 2 shows the critical (marginal) wave numbers (scaled with the square root of

the cross section area, k̂CÂ
1/2) as a function of the contact angle (θ). The solid curve

corresponds to the predictions of Davis 8 while the symbols to our numerical results: crosses

indicate numerical experiments whose time evolution were unstable, while circles correspond

to simulations with a stable outcome. In the paper by Davis 8 gravity is neglected, and inertia

is not relevant in the determination of k̂C. Our model however includes these effects: we

set LaÂ1/2 = 1.24 and BoÂ = 0.012, i.e. inertia and gravity effects are both kept small.

This combination of parameters corresponds to the fact that our numerical experiments

were carried out for strips with a fixed (dimensional) cross section area. If we adopt the

following values of density (ρ = 1000 kgm−3), surface tension (σ = 0.05Nm−1), viscosity

(µ = 0.1Pa s) and gravity acceleration (g = 9.8m s−2), the resulting cross section area is

A = 6.1 × 10−8 m2. Note however that in order to keep A constant, the (dimensional)

curvature radius of the unperturbed thread of liquid diminishes as the contact angle θ

increases from 0 to π.

Figure 2 shows that our stable/unstable results are correctly situated above/below the

prediction of Davis. However, the “resolution” in k̂Â1/2 employed (minimum difference

between wave numbers tested) in our simulations was poorer for larger θ.

We also evaluated the growth rate (α) of the disturbance applied to the strip shape, at

early stages of the time evolution. To this end, we performed a Discrete Fourier Transform

of the shape of the strip width, that can be written as follows

ŵ(x̂, t̂) ≈ ŵ0(t̂) + ŵ1(t̂) exp (ik̂x̂) + ŵ2(t̂) exp (i2k̂x̂) + · · · , (13)

where the time varying amplitudes (ŵn(t̂), n = 1, 2, . . . ) of the spatial modes are approxi-
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Â

1
/
2

bc Our results, stable cases

× Our results, unstable cases

Davis8

FIG. 2. Critical wave numbers (scaled with the square root of the cross section area) as a function

of the contact angle. Our results were computed for LaÂ1/2 = 1.24 and BoÂ = 0.012.

mately given at early times by

ŵ1(t̂) ≈ ŵ0
1(t̂) + c1 exp (αt̂),

ŵ2(t̂) ≈ ŵ0
2(t̂) + c2 exp (βt̂),

...

(14)

We then extracted α from the analysis of the time evolution of ŵ1(t̂) in eq. (14). The

terms ŵ0
n(t̂) are rapidly decaying transients, that are produced due to the initial condition

employed, before the exponential growth regime dominates the time evolution.

As an example, Fig. 3 shows the dispersion relationship (α as a function of k̂) for θ =

5π/18 (Â = 0.380), La = 2.01 and Bo = 0.0316 (note that we keep the same values

of LaÂ1/2 = 1.24 and BoÂ = 0.012). The solid curve represents the results from Diez,

González, and Kondic 12 [see the solid curve for p̃ = 5 (or Ã ≡ BoÂ = 0.012) in Fig. 9 of

that paper]. The circles are our results. As can be seen, the agreement is very good, except

for the largest negative growth rate (stable case). In particular, the maximum growth rate

and the critical wave number (k̂C, the zero-crossing wave number) are both reproduced well.

Finally, we also compared our results with those from Diez, González, and Kondic 12 and
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FIG. 3. Dispersion relationship (linear growth rate versus wave number) for θ = 5π/18 (Â = 0.380)

and Bo = 0.0316. Our results were computed for La = 2.01.

Sekimoto, Oguma, and Kawasaki 11 for non-negligible gravity effects. We fixed the values

of θ = π/6 (Â = 0.0906) and La = 4.11 (again, we maintain the value of LaÂ1/2 = 1.24),

and varied Bo. The comparison is displayed in Fig. 4. The solid curve is the prediction

by Diez, González, and Kondic 12 , the dashed curve the results from Sekimoto, Oguma, and

Kawasaki 11 and the symbols our results, with the same convention as in Fig. 2. These

results seem to indicate that our numerical results are closer to those of Diez, González, and

Kondic 12 , while the predicted k̂C of Sekimoto, Oguma, and Kawasaki 11 are slightly larger

over almost the whole range of Bo depicted.

In the next section we study the influence of inertia for different contact angles.

B. Inertia effects for different contact angles

In this section we explore the effect of inertia on the time evolution of liquid threads

forming different contact angles with the substrate, after their cross section area is perturbed.

Let us recall that we have already computed critical wave numbers for different contact angles

(including values equal and above π/2) in sec. IVA: it is important to point out that inertia

does not affect the values of k̂C. The results presented below were obtained for BoÂ = 0.012.

For fixed values of density (ρ = 1000 kgm−3), surface tension (σ = 0.05Nm−1) and gravity

acceleration (g = 9.8m s−2), this means that fluid lines have constant cross section area

(A = 6.1× 10−8 m2).
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FIG. 4. Critical wave numbers as a function of the Bond number, for θ = π/6 (Â = 0.0906). Our

results were computed for La = 4.11.

1. Results for early times of the evolution

We first restrict our analysis to the early times of the evolution of the process, paying

particular attention to the linear (exponential) growth rates (α). Figure 5 shows the dis-

persion relationship (α as a function of k̂) for θ = π/6 (Â = 0.0906), for LaÂ1/2 = 1.24

(µ = 0.1Pa s, squares and dashed curve), LaÂ1/2 = 1.24× 102 (µ = 0.01Pa s, triangles and

dot-dashed curve) and LaÂ1/2 = 1.24 × 104 (µ = 0.001Pa s, circles and solid curve). The

symbols represent the actual outcome from the numerical simulations (and their subsequent

post-processing), while the curves are polynomial fits of 5th order of these data. We adopted

polynomials of the form α = k̂2(b0 + b1k̂ + b2k̂
2 + b3k̂

3) because, on one hand, α → 0 as

k̂ → 0 owing to volume conservation and, on the other hand, the asymptotic behaviour of

α for small k̂ obtained by Yang and Homsy 15 and Brochard-Wyart and Redon 38 is of the

form α ∼ Ck̂2, with C a constant.

Figure 5 clearly shows that the influence of inertia is moderate: growth rates seem to

first increase slightly and then decrease noticeably. α diminishes by roughly a 20% from the

smallest to the largest La computed, while k̂M increases slightly.

We obtained similar results for θ = π/2 (Â = π/2) and the same values of LaÂ1/2; these
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LaÂ = 1.24× 104

FIG. 5. The influence of inertia on the dispersion relationship (linear growth rate versus wave

number) for θ = π/6 (Â = 0.0906) and BoÂ = 0.012. Symbols are the actual values of α computed

numerically; curves represent 5th order polynomial fits of these data.

are displayed in Fig. 6. Now the influence of inertia is more important. Compared to the

case for LaÂ1/2 = 1.24, the values of α reduce to 75% and 17% of the reference value, as La

increases in steps of a hundredfold. As before, the influence of inertia on k̂M is only weak.

Finally, we also computed the dispersion relationship for θ = 3π/4 (Â = 2.86) and the

same values of LaÂ1/2. Results are depicted in Fig. 7. In this case the influence of inertia

on the maximum growth rate is very important: the value of α computed for the viscous

case (LaÂ1/2 = 1.24) is about twice and 14 times larger than the values obtained when La

increases by 100 and 104, respectively. Again, the value of k̂M undergoes a small increment

as inertia becomes important.

For the results above described, it is important to remark that α is a non-dimensional

growth rate. Since the characteristic time is µR/σ, even though dimensionless growth rates

reduce with La, dimensional ones increase owing to the decrease in viscosity (and charac-

teristic time µR/σ, which divides α to produce the dimensional growth rate).
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2. The evolution of the liquid thread for long times

In previous sections the focus was in the behaviour of the liquid thread at early times of

the evolution, when the perturbation of the cross section area either starts to grow (k̂ < k̂C)

or decays towards a uniform value (k̂ > k̂C). Since unstable wave numbers grow at varying

rates —and a fastest growing mode (let us define k̂M as the wave number of this mode)

can be identified— it is worth analysing the development of the instability at long times

and observe the competition of different modes, when either viscous or inertial effects are

dominant. To this end, we study the time evolution of four of the unstable cases already

computed in previous sections: (a) θ = π/6 (Â = 0.0906), LaÂ1/2 = 1.24 and k̂ = 0.15, (b)

θ = π/6, LaÂ1/2 = 1.24 × 104 and k̂ = 0.15, (c) θ = 3π/4 (Â = 2.86), LaÂ1/2 = 1.24 and

k̂ = 0.1, and (d) θ = 3π/4, LaÂ1/2 = 1.24 × 104 and k̂ = 0.1. As can be noticed, we chose

perturbations with wavelengths several times longer than the fastest growing modes.

Besides, as stated at the beginning of sec. IVB, in all the cases BoÂ = 0.012, which can

be interpreted as keeping constant the (dimensional) cross section (A = 6.1× 10−8 m2) if, in

addition, we adopt the following fixed values of density (ρ = 1000 kgm−3), surface tension

(σ = 0.05Nm−1) and gravity acceleration (g = 9.8m s−2).

Figures 8–11 show the results corresponding to cases (a)–(d) above. Each frame depicts

the shape of the liquid strip for a given instant of time. Shadings (colours in online version)

illustrate the value of the pressure.

Case (a) (Fig. 8) shows the development of the instability, starting from the initial per-

turbation (the domain comprises half a wavelength) to the final state that can be attained

with our numerical technique, where one of the necks (x̂ ∼ 10) has practically undergone a

pinch-off process. Note that the ALE-based scheme we employ does not support changes in

the domain topology. Therefore, if one of the (assuming multiple) necks reaches the pinch-off

before others, the process occurring after that point in time can not be observed with the

present technique. At t̂ = 2069, a number of narrowings appear at x̂ ∼ 7, 11 and 17 (there

is another at x̂ ∼ 20 originated by the initial condition) where, moreover, the pressure is

locally higher owing to the larger curvature of the free surface. As time advances (t̂ = 2852)

these regions continue thinning and some new appear at x̂ ∼ 3 and 14. The final pattern

attained with our scheme (t̂ = 3269) suggest the the instability process would end up with

about 11 large droplets and at least 3 smaller droplets in a whole wavelength (considering
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FIG. 8. (Colour online) The time evolution of a liquid strip with an initial perturbation of wave

number k̂ = 0.15. The remaining parameters are θ = π/6 (Â = 0.0906), BoÂ = 0.012 and

LaÂ1/2 = 1.24. Shadings (colours in online version) indicate values of pressure (scale on the

right of each frame). Instants of dimensionless time are printed for reference. The corresponding

dimensional times (considering R = 8.22 × 10−4m, σ = 0.05Nm−1 and µ = 0.1Pa s) are 1.69 s,

3.40 s, 4.69 s and 5.37 s.

the symmetry of our simulated system, where only a half wavelength is shown). A rough

calculation (k̂M/k̂) predicts the formation of about 10–11 droplets of the fastest growing

mode, which compares reasonably well with the computations.

When viscosity is decreased (case (b), Fig. 9) and the contact angle is kept small, the

instability process observed is practically the same, except for the time scale. In terms of

dimensionless time, the first pinch-off (x̂ ∼ 10) is produced somewhat (1.4 times) later than

in case (a). However (and recalling that times are made non-dimensional with Rµ/σ) if

one considers that the only change in going from case (a) to (b) is a hundredfold decrease

in viscosity, a simple calculation shows that actually attaining pinch-off in case (b) takes

∼ 1.4% of the time that it takes in case (a).

Let us now consider increasing the contact angle, compared to case (a), but maintaining
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FIG. 9. (Colour online) The time evolution of a liquid strip with an initial perturbation of wave

number k̂ = 0.15. The remaining parameters are θ = π/6 (Â = 0.0906), BoÂ = 0.012 and

LaÂ1/2 = 1.24× 104. Shadings (colours in online version) indicate values of pressure (scale on the

right of each frame). Instants of dimensionless time are printed for reference. The corresponding

dimensional times (considering R = 8.22×10−4m, σ = 0.05Nm−1 and µ = 0.001Pa s) are 0.0159 s,

0.0531 s, 0.0693 s and 0.0770 s.

the same (dimensional) cross section area (case (c), Fig. 10). To accomplish this, the (di-

mensional) radius of the straight liquid filament (R) is made ∼ 5.6 times smaller. After the

initial condition (t̂ = 149.3), the liquid thread evolves producing two narrowings at x̂ ∼ 7

and 19, besides the original one at x̂ ∼ 30. These regions continue thinning (t̂ = 170.3

and 185.4) but at some point (t̂ = 204.0) these long necks give rise to the formation of

small bulges limited in turn by smaller constrictions. When the first pinch-off (x̂ ∼ 14)

is practically attained (t̂ = 206.6), the final pattern observed suggest the formation of 5

large droplets along with other 5 smaller droplets39, in a complete wavelength. The same

rough estimate as before predicts the formation of about 5 droplets of the fastest growing

mode. In dimensionless terms, the time elapsed until the first pinch-off is a 6.3% of the time

demanded in case (a). When the decrease in R is accounted, one obtains that reaching the
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pinch-off actally takes considerably less (dimensional) time: 1.1% of that in case (a). Either

in dimensionless or in dimensional terms, it is remarkable the acceleration of the break-up

process observed when θ is increased.

Finally, let us take case (c) as a base for comparison, and reduce the viscosity 100 times

(case (d), Fig. 11). As can be observed, in this case inertia has important effects on the

pattern of break up displayed by the liquid filament. During the early stages (up to t̂ = 2294)

of the instability, one can observe the formation of necks about the same locations as in

case (c). It is however in late stages when differences appear. When inertia is important

compared to viscous forces, the constrictions that —as a result of the instability process—

become more pronounced than others evolve faster and, as a consequence, those locations

attain the pinch off before the other necks. This contrasts the behaviour observed in case (c)

(Fig. 10), where the break up of the filament seems to be attained more or less at the same

time in all the narrowings. For this reason, it is difficult to establish the final pattern of

break up in case (d). One can speculate that the evolution would end up with about 5 large

droplets and possibly 3 smaller droplets within a distance of one wavelength, but simulations

for longer times are required to ascertain to this point. According to the calculations shown

in section IVB1, one could estimate the formation of about 6 droplets, based on the wave

number of the fastest growing mode. We can also observe that the (dimensionless) time

elapsed to attain the first break up is ∼ 13 times that corresponding to the viscous case

(c). Recalling the comparison of pinch-off times of cases (a) and (b), we can infer that the

effect of the inertial term in eq. (9) is more important for large contact angles (θ) and hence

large dimensionless cross sectional areas (Â). However, as before, considering that the only

change in going from case (c) to (d) is a hundredfold decrease in viscosity, it turns out that,

in fact, the dimensional time for filament rupture in case (d) is ∼ 13% of that of case (c).

Indeed the dimensional times indicated in Figure 11 are very short, implying (for practical

experimental purposes) a near instantaneous break up of a filament as it is being laid down

(as opposed to an instability on an already deposited filament).

V. DISCUSSION AND CONCLUSIONS

In this paper we analyse the capillary instability process undergone by a segment of

fluid rivulet deposited on a flat solid substrate, with symmetry conditions at both ends
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FIG. 10. (Colour online) The time evolution of a liquid strip with an initial perturbation of

wave number k̂ = 0.1. The remaining parameters are θ = 3π/4 (Â = 2.86), BoÂ = 0.012 and

LaÂ1/2 = 1.24. Shadings (colours in online version) indicate values of pressure (scale on the

right of each frame). Instants of dimensionless time are printed for reference. The corresponding

dimensional times (considering R = 1.46× 10−4m, σ = 0.05Nm−1 and µ = 0.1Pa s) are 0.0156 s,

0.0437 s, 0.0499 s, 0.0543 s, 0.0597 s and 0.0605 s. The noisy variations in shading (colour in online

version) visible for t = 53.2 are partly due to a lightning effect in the picture and partly due to

small amplitude numerical oscillations in the pressure field (of order 5 × 10−3); these oscillations

are practically negligible for larger times, due to the range of pressures developed.
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FIG. 11. (Colour online) The time evolution of a liquid strip with an initial perturbation of

wave number k̂ = 0.1. The remaining parameters are θ = 3π/4 (Â = 2.86), BoÂ = 0.012 and

LaÂ1/2 = 1.24× 104. Shadings (colours in online version) indicate values of pressure (scale on the

right of each frame). Instants of dimensionless time are printed for reference. The corresponding

dimensional times (considering R = 1.46 × 10−4m, σ = 0.05Nm−1 and µ = 0.001Pa s) are

4.14× 10−3 s, 6.02× 10−3 s, 6.72× 10−3 s, 7.21× 10−3 s, 7.61× 10−3 s and 7.72× 10−3 s. The noisy

variations in shading (colour in online version) visible for t = 1415 are partly due to a lightning

effect in the picture and partly due to small amplitude numerical oscillations in the pressure field

(of order 5 × 10−3); these oscillations are practically negligible for larger times, due to the range

of pressures developed.
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of the strip. This allows us to study the time evolution of individual spatial modes and

obtain the dispersion relationship of the system. We also analysed the late development of

the instability, for liquid filaments several times longer than the computed fastest growing

wavelength, until practically a first breakup of the thread is attained.

In real fluid strips, the finite size or any eventual geometric constraints will limit the

selection of modes. Intuition indicates that the line of fluid will tend to break up according

to the fastest growing spatial mode (among those permitted). Our computations suggest

that this reasoning gives in general a very good estimate of the number of the main (in

terms of size) resulting droplets, independently of the contact angle or viscosity of the fluid.

However, the precise rupture pattern (having droplets both large and small interspersed at

varying distances) does seem to depend on these parameters.

One also expects that growth rates give an indication of the time scale of the break up

process. According to our results, this is indeed the case when one compares the rupture

times of section IVB2 with the growth rates computed in section IVB1. For contact angles

up to π/2, lubrication-based theories like those of Yang and Homsy 15 and Diez, González,

and Kondic 12 give an excellent prediction of the critical wave number. Besides, for moderate

contact angles (see Fig. 5, corresponding to θ = π/6) they also provide a very good estimate

of growth rates. Our numerical results including inertia indicate that in this case α, the

dimensionless growth rate, could be overestimated by roughly 20% when inertia is ignored.

However, for larger contact angles (see Fig. 6 for θ = π/2 and Fig. 7 for θ = 3π/4), growth

rates could be overestimated by one order of magnitude when inertia should be important

and yet is neglected. This affects considerably the time of rupture of the rivulet (see Figs. 8–

11) and could have important implications for practical applications. Note however that if,

as in our case, the increase of the relative importance of inertia is achieved by dimishing

the viscosity of the liquid, the dimensional growth rates of less viscous fluids are still larger

than these of more viscous liquids, though not so large as a theory that ignores inertia would

have predicted.

On the other hand, inertia seems to have only a weak influence on the wave number of the

fastest-growing mode, according to the results of Figs. 5–7. In general terms, k̂M increases

slightly as La augments.

Our results also suggest that for large contact angles (non-wetting case) the number of

satellite droplets that tend to form is larger than for small contact angles (wetting case), at
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least for viscous liquid filaments. This result is in qualitative agreement with the experiments

of González et al. 18 , who observed a large number of satellite droplets in the rupture of

viscous strips under partially wetting conditions. Due to limitations in our numerical scheme

(simulations stop when the first pinch-off is attained), we can not ascertain to the validity

of this statement for less viscous liquid rivulets.

This is a first study of the influence of inertia on the stability of deposited fluid filaments.

Future work will complement this investigation and address other topics such as the influence

of gravity when contact angles are large, the influence of more complex behaviours of the

contact line, and finite size effects.
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