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Abstract 
is paper examines the design of transfers from the Sun-Earth libration orbits, at the L1 and L2 
points, towards the Moon using natural dynamics in order to assess the feasibility of future 
disposal or lifetime extension operations. With an eye to the probably small quantity of 
propellant left when its operational life has ended, the spacecraft leaves the libration point orbit 
on an unstable invariant manifold to bring itself closer to the Earth and Moon. e total 
trajeory is modeled in the coupled circular restried three-body problem, and some preliminary 
study of the use of solar radiation pressure is also provided. e concept of survivability and event 
maps is introduced to obtain suitable conditions that can be targeted such that the spacecraft 
impas, or is weakly captured by, the Moon. Weak capture at the Moon is studied by method of 
these maps. Some results for planar Lyapunov orbits at L1 and L2 are given, as well as some results 
for the operational orbit of SOHO. 
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1. Introduction 
It has become increasingly accepted by the space community that once a spacecraft has reached an 
end to its nominal mission lifetime it should be safely disposed of such that future missions are 
not jeopardized. While this holds especially true for particularly busy orbits around the Earth, 
such as low earth and geosynchronous orbits, there is also a case to make for safely controlling the 
disposal of spacecraft in libration point orbits (LPO) at the Sun-Earth L1 and L2 libration points. 
Often these spacecraft will still have propellant left after their mission has been completed, and it 
is therefore interesting to see what could be done with these spacecraft in terms of disposal or 
mission extension. In this work we study the disposal options towards the Moon from both Sun-
Earth L1 and L2 libration points within the framework of the Coupled Circular Restried ree-
Body Problem, or Coupled CR3BP (Koon et al. 2001). is methodology has been used in the 
past to study trajeories between the Sun-Earth libration points and the vicinity of the Earth and 
Moon, where a conneion is made using the unstable manifold flowing from the Su   -Earth 
libration point (within the Sun-Earth CR3BP) and the stable manifold floing towards the 
Moon L2 point (within the Earth-Moon CR3BP) at low ∆v cost. Examples include the work 
done by Koon et al. (2001); Gómez et al. (2001); Canalias and Masdemont (2008); and Fantino 
et al. (2010). 

is work introduces the concept of survivability map and event map to findtarget conditions, in 
the vicinity of the Moon, that lead to lunar impa or lunar weak capture. ese maps aid in the 
design of trajeories and effeively replace the use of the stable manifold to design the trajeory 
arc incoming towards the Moon in the Earth-Moon CR3BP. is approach enables a very simple 
transfer design where one direly targets a state on the map in order to get the desired capture 
orbit or impa. Weak capture (or temporary ballistic capture) is typically defined as a spacecraft
moving to within the vicinity of the planet (in this case the Moon) and staying there for some 
minimum period of time, or by performing at least a single revolution about the planet. ere is 
extensive work in the literature on weak capture in particular to design transfers to the Moon 
with a reduced propellant cost with respe to a more traditional Hohmann transfer. An 
algorithmic definition of the weak stability boundary is given by         Belbruno (2004), and later 
expanded upon by García and Gómez (2007). A quite complete overview of the existing literature 
can be found in the work of Silva and Terra (2012), and a clear definition of weak capture is 
given by Topputo et al. (2008).  

is paper begins with a brief overview of the CR3BP, and the method of conneing (often 
referred to as patching) multiple CR3BPs, in Seion 2. en, Seion 3 introduces the concept 
of the survival and event maps, which are used to acquire initial conditions (named lunar target 
states) that lead to lunar impa or capture. Seion 4 describes the overall process used to find,
and further optimize, transfers. e process of Seion 4 is used to arrive at some results for a 
planar Lyapunov orbit at L2, which are presented in Seion 5. An initial study of the use of solar 
radiation pressure to aid the design is given in Seion 6, with an eye towards future possibilities 
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where smaller spacecraft with deployable struures may be disposed of from (perhaps displaced) 
libration point orbits. Finally, a description of future efforts and some concluding remarks are 
offered in Seion 7. 

2. Properties of the Coupled CR3BP 
e process of conneing (or patching together) 3-body problems has been used successfully in 
the past to obtain suitable results that aid in the creation of transfers in a full ephemeris model. 
For instance, the methodology has been employed in the study of multi-moon tours (Koon 2001; 
Lantoine et al. 2011; Campagnola and Russell 2011) and in the context of the CR3BP (Koon et 
al. 2001; Gómez et al. 2001; Marsden and Ross 2006; Canalias and Masdemont 2008; Fantino et 
al. 2010). e definition and equation of motion of the CR3BP (seion 2.1), its equilibrium 
points (seion 2.2), the flow near these equilibrium points (seion      2.3), and the method of 
conneing two CR3BPs (seion 2.4) provide the background theory from existing literature on 
which the subsequent seions (use of the survival maps and the design of the transfers) rely. 

e motion of a spacecraft from a Sun-Earth L1/L2 libration point orbit towards the Moon is 
modelled in this work by using two coupled CR3BP models. is effeively divides a trajeory 
into two separate segments, each using a different gravitational model, where the initial segment 
is modelled within the framework of the Sun-Earth CR3BP while the second is modelled within 
the framework of the Earth-Moon CR3BP. e partial trajeories from both CR3BP models are 
conneed at a specified point,via coordinate system conversion, to create a single trajeory that 
would approximate the trajeory in the aual 4-body dynamics. e Sun-Earth CR3BP has as 
primary masses the Sun and the Earth-Moon barycentre (the mass of the Earth-Moon barycentre 
is considered here to be the combined mass of the Earth and the Moon).  

2.1. Definition of the CR3BP 
e Circular Restried ree-Body Problem (CR3BP) is a particular case of the three-body 
problem (being in itself a special case of the more general n-body problem). e restried 
problem has been studied extensively in the past, and can be described as two masses (or 
primaries) of symmetric mass distribution (i.e. they may be considered as point masses) that 
revolve around their centre of mass in a circular motion. A third massless particle moves within 
the system of the two revolving primaries without influencing their motion thus the problem is 
considered restried). e CR3BP describes the motion of this third body. e equations of 
motion of the CR3BP can be derived in several ways, and many reference texts provide a detailed 
description of the problem formulation. A comprehensive Newtonian approach may be found in 
the book of Szebehely (1967), and a Lagrangian approach can be found in the book of Meyer, 
Hall and Offin (2009). It is convenient to make the system non-dimensional by giving the system 
a unit of mass (or 𝑚1 + 𝑚2 = 1), and by choosing the distance between the primaries to be a 
unit of length, and by choosing the unit of time such that one full orbital period of both 
primaries is 2𝜋. As a result of this last choice the angular velocity of the two primaries about the 
barycentre is 𝜔 = 1 (thus making the gravitational constant unity due to this fa and the fa 
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that the total mass is 1). e masses are made dimensionless by dividing each mass by the total 
system mass. If we assume that 𝑚1 > 𝑚2 we may write for the dimensionless masses 𝜇1 = 1 − 𝜇 
and 𝜇2 = 𝜇. e system is now solely defined by the massratio of the primaries 𝜇. Due to the 
rotation of primaries the equations of motion contain the time explicitly in the inertial system. 
e explicit appearance of time in the equations of motion is commonly eliminated by using a 
suitable rotating system (non-inertial) where the more massive primary is placed along the x axis 
at (−𝜇, 0,0) and the less massive primary is placed at (1 − 𝜇, 0,0). e resulting equations can 
be written in veorial form as 

 𝑑2𝐫
𝑑𝑡2

+ 2𝛚 × 𝑑𝐫
𝑑𝑑

+ ∇𝑈(𝐫) = 0, [1] 

where 𝐫 is the position veor of the massless third body. e angular velocity veor 𝛚 of the 
rotating frame is defined a 

 𝛚 = 𝜔𝐞�, [2] 

where 𝐞� is the positive unit veor along the z axis (as stated above, the magnitude of the angular 
velocity is 𝜔 = 1 in the non-dimensional problem). e 3-body gravitational potential is defined
by 

 
𝑈(𝐫) = − �1

2
|𝛚 × 𝐫|2 + 1 − 𝜇

𝐫1
+ 𝜇

𝐫2
�, [3] 

In this work, a mass ratio of 𝜇�� = 1.2150587·10-2 is used for the Earth-Moon set of primaries, 
and a mass ratio of 𝜇�� = 3.0404234 ·10-6 is used for the Sun-Earth set (here the smaller 
primary is considered to be the summed mass of the Earth and Moon). e positions of the third 
body (i.e. the spacecraft) w.r.t. the primary 𝐫� and primary 𝐫� are 

 𝐫1 = [𝑥 + 𝜇, 𝑦, 𝑧],
𝐫2 = [𝑥 + 𝜇 − 1, 𝑦, 𝑧]. [4] 

is system of equations has a first integral,named the Jacobi integral, which relates the value of 
the Jacobi constant with the gravitational potential and the velocity components of the massless 
particle. e integral is given by  

 𝐽 = −(𝑥2̇ + 𝑦2̇ + 𝑧2̇) + 2𝑈(𝑥, 𝑦, 𝑧). [5] 

2.2. Equilibrium points and Hill’s region 
e CR3BP is known to have 5 equilibrium points; 3 unstable collinear points are located along 
the x axis (named L1, L2, L3) and 2 stable equilateral points (named L4 and L5). All 5 equilibrium 
points lie in the plane of rotation of both primaries (see Figure 1 for a plot of their locations). 
ese can be found by solving ∇𝑈(𝐫) = 0 under the assumption of a planar configuration (i.e.
all out-of-plane z components are equal to zero). For a particular energy level of the system (by 
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setting a constant value for the Jacobi constant) the regions around the primary can be divided 
into a region where the particle may travel (known as the Hill’s region) and a forbidden region 
(shown for an example energy level as the grey area in Figure 1) which the particle may not access 
for the given value of the Jacobi constant. 

 

Figure 1: Diagram showing the equilibrium points in the CR3BP in the rotating frame (with the 
barycentre being the origin of the axes x and y) and the forbidden region for a particular value of 

the Jacobi constant 

2.3. Periodic orbits and their flow 
As we are studying the departure of spacecraft from periodic orbits at Sun-Earth L1 and L2 and 
their arrival towards the Moon via L2 from the exterior region in the Earth-Moon system we 
restri our discussion to the motion about L1 and L2. ere are 4 possible motions (Conley 1968) 
near each of these 2 equilibrium points: transit orbits that allow passage between the exterior and 
the interior regions, non-transit orbits where the particle approaches the equilibrium region but 
returns back into the region the particle came from, and unstable periodic orbits where the 
particle remains in the vicinity of the equilibrium point. e 4th type is the particle asymptotically 
joining or leaving the periodic orbit. ese asymptotic orbits are part of a larger struure of 
invariant manifold ‘tubes’ (McGehee 1969; Gómez et al. 2001). e borders of these tubes form 
the boundary between the transit (inside the tube) and non-transit orbits (outside the tube). 
ere are four manifold ‘tubes’; 2 stable manifolds where the particle flows towards the 
equilibrium region and 2 unstable manifolds where the particle flows aay from the equilibrium 
region. ese are shown in Figure 2 for an example periodic orbit at the L1 libration point in the 
Earth-Moon system. ere exist a number of periodic orbits near the collinear libration points: 
horizontal Lyapunov orbits (in the plane of the primaries), vertical Lyapunov orbits (figure eight
shape where the orbit interses the plane of the primaries in a single location in the rotating 
reference frame), and three-dimensional halo orbits. e existence of quasi-periodic orbits has 
also been shown: the Lissajous family of orbits that are around the vertical Lyapunov orbits, as 
well as the quasi-halo orbits that are around the halo orbits (Gómez et al. 2000a,b). 
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Figure 2: Illustration of the unstable (d) and stable (blue) invariant manifolds associated to a
periodic orbit at L1 in the Earth-Moon system 

2.4. Connecting the CR3BPs 
Conneion between the two CR3BPs is accomplished by converting coordinates from one 
system to the other. is conversion occurs when the spacecraft, on its way from the Sun-Earth 
L1/L2 equilibrium region, crosses the x location of the second primary (the combined mass of the 
Earth and Moon) in the Sun-Earth synodical system. Here it is assumed that both systems are 
coplanar and that both pairs of primaries are in circular orbits around another. To convert the 
position from Earth-Moon to Sun-Earth reference frame the relation 

 𝜂�� = 𝑙��
𝑙��

𝑒�𝛼𝜂�� + 1 − 𝜇�� [6] 

using complex notation is used, where the x and y components are given by 

 𝜂�� = 𝑥�� + 𝑖𝑦��,    𝜂�� = 𝑥�� + 𝑖𝑦��. [7] 

e distances between the Sun and Earth and Earth and Moon are given by 𝑙�� = 1.495979 ⋅
108 km and 𝑙�� = 384400 km. e mass parameter 𝜇�� that defines the Su-Earth system is 
computed by 

 𝜇�� = 𝑚� + 𝑚�
𝑚� + 𝑚� + 𝑚�

. [8] 

e masses are given for the Earth as 𝑚� = 5.973699 ⋅ 1024 kg, for the Moon as 𝑚� =
7.347673 ⋅ 1022 kg, and for the Sun 𝑚� = 5.973699 ⋅ 1030 kg. e angle 𝛼 representing the 
relative geometry of both systems (i.e. the angle between the axes spanned along both sets of 
primaries) is computed using  

 𝛼 = 𝛼0 + (𝜔𝐸𝐸 − 𝜔𝑆𝑆) 𝑡𝐸𝐸
𝜔𝐸𝐸

, [9] 
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where 𝛼0 is the initial relative geometry of the system. e angular velocities for both systems are 
given by Kepler’s third law as 

 
𝜔�� = �

𝐺(𝑚� + 𝑚�)
𝑙��

3  [10] 

for the Earth-Moon system, and for the Sun-Earth system as 

 
𝜔�� = �

𝐺(𝑚� + 𝑚� + 𝑚�)
𝑙��

3 . [11] 

is gives an angular velocity of 𝜔�� = 2.66531437 ⋅ 10−6 rad/s and 𝜔�� = 1.99098670 ⋅
10−7 rad/s. e velocity from Earth-Moon rotating frame can be converted to Sun-Earth rotating 
frame by 

 𝑑𝜂��
𝑑𝑡��

= 𝑙��
𝑙��

𝜔��
𝜔��

𝑒�𝛼 �𝑖�1 − 𝜔��
𝜔��

�𝜂�� + 𝑑𝜂��
𝑑𝑡��

�. [12] 

Because is it assumed that both rotating frames lie in the same plane (both systems are coplanar) 
the conversion for any out-of-plane conversion is straightforward. e position is converted using 
the relation 

 𝑧�� = 𝑧��
𝑙��
𝑙��

, [13] 

and the velocity is converted using the relation 

 𝑧�̇� = 𝑧�̇�
𝑙��
𝑙��

𝜔��
𝜔��

. [14] 

For a comprehensive description of the conversion process (including details on the conversion to 
and from the inertial reference frame, and from the Earth-Moon to Sun-Earth synodical system) 
the reader is referred to the work of Castelli (2011). 

3. Survival and Event Maps 
Regardless of the application, one can be interested in what kind of conditions near the L2 
libration point would be beneficial forestablishing a long duration quasi-periodic orbit about the 
Moon, and what conditions would lead to an impa on the lunar surface. To this end, one can 
analyse the case of a family of virtual spacecraft placed at 𝑥 = 𝑥�2

 and at interspaced points along 
−0.25 < 𝑦 < 0.25 within the Earth-Moon CR3BP. ese spacecraft can then be assigned a 
velocity, for which two methods are provided in this paper. e first assumes a parallel flow alon
the x axis, and the second derives the velocity for each point on the basis of a specified value of
the Jacobi constant. In the first mehod, the spacecraft are then given initial velocity components 
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𝑦̇ = 0 and 𝑥 ̇ sampled uniformly from the domain −0.2 < 𝑥̇ < 0.2 (all values in the non-
dimensional system) such that the initial flow at𝑥 = 𝑥�2

 is always parallel to the x axis within 
the Earth-Moon rotating frame. Without loss of generality one can start by restriing the analysis 
to the planar case so that the position and velocity along the z axis are negleed. is leads to a 
group of initial states where 𝑥 and 𝑦 ̇ are constant, and 𝑦 and 𝑥 ̇ are varied. e state of the 
spacecraft can be generally written as 

𝐱�� = [𝑥�2
, 𝑦, 0, 𝑥,̇ 0, 0]T. [15] 

is group of states (henceforth referred to as lunar arrival states in this work) is then individually 
propagated forward in time until the orbit is no longer deemed stable or until the maximum 
propagation time of 3 months is met. In the framework of this discussion an orbit is considered 
stable when the spacecraft remains between the locations of the L1 and L2 points along the 𝑥 axis, 
and does not impa upon the Moon, i.e. when a set of coordinates (𝑥, 𝑦) fulfil 

𝑥�1
< 𝑥 < 𝑥�2

 [16] 

and 

�𝑥2 + 𝑦2 > 𝑅����. [17] 

e result of this propagation can be seen in the survival map shown in Figure 3. 

 

Figure 3: (a) Lunar survival map and (b) corresponding lunar propagation event map with constant𝑥 
and 𝑦 ̇and 𝑦 and 𝑥 ̇varied along axes. 

It can be seen in Figure 3a that large swaths of the map are accompanied by a low lifetime. 
Naturally those areas where the value of 𝑥 ̇ are positive correspond to a low orbit lifetime as the 
initial condition will tend to cause the spacecraft to immediately exit the Earth-Moon system past 
𝑥�2

. e central area in Figure 3a, however, shows promising areas where the orbit duration is 
higher. Note that the reason why the areas with positive 𝑥 ̇ as initial condition have a non-zero 
lifetime is because the limit at which the propagation is halted is slightly further out from the 
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Moon than 𝑥�2
. is is to allow for a degree of flexibility where the spacecraft may initially move

in the opposite direion before moving towards the Moon. Additionally, there is the praical 
consideration of preventing the propagation from already ceasing at the initial point. To 
understand which areas of initial conditions are suitable for lunar impa, and which are suitable 
for lunar capture, the cause of propagation termination is also recorded. is is shown in the 
event map in Figure 3b. e possible outcomes are stability (shown in white) as defined
previously in equations [16] and [17] for the propagation duration of 90 days, impa on the 
lunar surface (shown in light grey), passing outside the lunar region via 𝑥�1

(shown in dark grey), 
and passing outside the lunar region via 𝑥�2

 (shown in black). 

e map in Figure 3a provides an indication of which initial conditions are suitable to achieve a 
lunar capture or a lunar impa, but provides no information about the feasibility of reaching the 
desired initial condition from a Sun-Earth libration point orbit. is is addressed by propagating 
backwards in time the same set of initial conditions that was used to constru the survivability 
map in order to ascertain which regions of the map are reachable from Sun-Earth libration point 
orbit. is process is relatively quick as the propagation from an initial state is immediately halted 
when the arc passes 𝑥 = 𝑥�1

. e value of 𝑦 is checked when this occurs, to verify that the state is 
now in the exterior region (i.e. outside the surfaces of Hill) of the Earth-Moon system. 
Conversely, states that are inside the Earth-Moon system have originated from within the interior 
region of the surfaces of Hill. ese states are unreachable from Sun-Earth libration point orbit 
and thus are filtered out of the set of valid initial conditions. A graphical representation of this is
shown in Figure 4, where the unreachable initial conditions are set to a lifetime of zero (indicated 
in Figure 4 by a shade of dark red). It can be seen that the regions of interest are not adversely 
affeed in this case. One can observe a central symmetry here (due to the symmetric properties of 
the CR3BP), where the states leading to exit via L1, lunar impa, and 90 day stability are point 
refleed via the centre of the plot to the filtered out regions on the mapTo illustrate this, a state 
(−𝑥,̇+𝑦) on the map with positive survival time leads to motion about the Moon and has 
originated from the exterior region. is point is refleed to become (+𝑥,̇−𝑦), and will now 
show opposite behaviour; the spacecraft immediately leaves the lunar vicinity. It can be seen that 
those states leading to exit via L2 (as indicated by Figure 3b) are generally not refleed onto the
filtered part of the map. is stands to reason as any state leading to immediate exit towards the
exterior region would, when point refleed, lead to   movement towards the Moon and thus a 
non-zero lifetime.  
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Figure 4: Lunar survival map with constant𝑥 and 𝑦 ̇and 𝑦 and 𝑥 ̇varied along axes with filtering of

unreachable initial conditions. 

In addition to the first method of specifying velocit one may also create a survival map by setting 
an energy level of the system, or in other words choosing a value of the Jacobi constant of motion 

𝐽 = −(𝑥2̇ + 𝑦2̇ + 𝑧2̇) + 𝑥2 + 𝑦2 + 2�1 − 𝜇
𝑟1

+ 𝜇
𝑟2

�, [18] 

obtained from the Jacobi integral of the three-body problem (Szebehely 1967) where r1 and r2 are 
the scalar lengths of the veors given by equation 1[4]. Since this map will only consider a planar 
problem the 𝑧 components can be disregarded (𝑧 = 𝑧 ̇= 0). By choosing a value of the Jacobi 
constant, assuming a value of 𝑥 = 𝑥�2

, and given a mesh of values of 𝑦 and 𝑥,̇ the corresponding 
value of 𝑦 ̇ (and −𝑦)̇ can be computed. en, as for the previous map the entire set of initial 
conditions can be propagated forwards in time to study the behaviour. e resulting maps for the 
set of Jacobi constants J = [3.00, 3.05, 3.10, 3.15] is given in Figure 5a, along with the 
corresponding event map in Figure 5b. e plots contain empty regions, due to no valid real 
value of 𝑦 ̇ existing for particular combinations of the Jacobi constant and the other state 
parameters. e states that are stable for at least 90 days are only found for J = 3.00 and for 
clarity’s sake are marked in the event map in Figure 5b as green dots on the event map. As the 
Jacobi constant increases the forbidden zone of the Hill’s regions increases, and thus the region of 
interest on the maps becomes smaller and smaller. As a result, increased resolution is generally 
needed to reveal the struures on the map. is increased resolution comes at an additional 
computational cost, which is offset by the fa that the region of interest on the maps has also 
shrunk. 
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Figure 5: (a) Set of 4 lunar survival maps and (b) corresponding set of 4 lunar propagation event maps 
with constant𝐽 and 𝑦 and 𝑥 ̇varied along axes. 

An example lunar target state from each category of event is taken from the survival map shown 
in Figure 3 and propagated both forwards and backwards in time. e results are shown in Figure 
6 for a lunar target state leading to weak capture, impa, and exit from the vicinity of the Moon 
via L1 and L2. 

 

Figure 6: Example lunar target states (left 4 subp   ots) in the Earth-Moon rotating reference frame 
leading to (a) weak capture, (b) impa, (c) leaving the vicinity of the Moon towards the interior 
region, and (d) leaving the vicinity of the Moon towards the exterior region. Right Plots (e) through 
(f) are the corresponding plots in the inertial reference frame centred at the Earth. 

Finally, it should also be noted that these maps can be construed for transfers entirely within 
one CR3BP, for example interior transfers between the Earth and Moon (van der Weg and Vasile 
2012). e resulting set of initial conditions, their corresponding orbit lifetime, and their 
category of decay (impa or exit via libration points) can now serve as the basis for the design of 
transfers from Sun-Earth libration point orbits towards the Moon. 
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4. Transfer Design using the Maps 
As described briefly in Seion0, the transfer between Sun-Earth libration point orbit and Moon 
is modelled in two parts: the initial leg in the Sun-Earth CR3BP and the leg describing the 
motion nearer to the Earth and Moon in the Earth-Moon CR3BP. e transfer from Sun-Earth 
L1/L2 libration point orbit to the Moon consists initially of following the branch of the unstable 
manifold, generated from the periodic orbit, towards the Earth-Moon barycentre in the Sun-
Earth CR3BP. Instead of utilizing the stable manifold branch (originating from a libration point 
orbit at L2 in the Earth-Moon system) in the Earth-Moon CR3BP to bring the spacecraft towards 
the Moon (as would be typical for a WSB transfer, see Koon 2001), use is made of the lunar 
arrival states on the survival map to direly target desired conditions near the Moon (such as 
weak capture or impa). e procedure outlined in this seion is usable for both planar as well 
as non-planar cases. However, the results generated in the following seion assume the two 
conneed CR3BPs to be coplanar and make use of planar survival maps. e procedure remains 
unchanged; merely 𝑧 and 𝑧 ̇are always equal to zero for this case. Both individual transfer legs are 
described here by their position (𝑥, 𝑦, 𝑧) and their velocity (𝑥,̇ 𝑦,̇ 𝑧)̇ along a discretized period of 
time, effeively giving two 6×N matrices (where N differs for both legs due to numerical 
integration and the period of time thereof). e initial leg modelled in the Sun-Earth CR3BP is 
denoted by 𝒔���, and the second leg modelled in the Earth-Moon CR3BP is denoted by 𝝈�. An 
example of a stable branch of an invariant manifold in the Earth-Moon CR3BP, as well as a 
subset of arcs leading to lunar capture and impa, is shown in Figure 7. e stable branch 
denoting the flow towards the M  oon from the exterior regions is shown in black, whereas the       
weak capture (shown in blue) and impa (shown in red) arcs are obtained from a representative 
sampling of the survival map in Figure 3. Figure 7 shows that the arcs flowing towards the lunar
arrival states bear quite some similarity to the manifold struure flowing towards its a  ssociated
libration point orbit. 

 
Figure 7: Stable manifold branch flowing towards the Moon from the exterior of the Eart-Moon 

syste (shown in black), the flow towards the Moon based n a representative seleion of lunar 



Page 13 of 27 

arrival states targeting weak capture seleed fromFigure 3 (shown in blue), and the flow towards
the Moon based on a representative seleion of lunar arrival states targeting lunar impa seleed

from Figure 3 (shown in red). 

A conneion between the arcs 𝒔��� and 𝝈� from both Sun-Earth and Earth-Moon CR3BPs can 
be made by transforming one set of states into the reference frame of the other 𝝈�(𝛼0) → 𝒔�, 
and subsequently searching for interseions on a given Poincaré seion. e initial orbital phases 
𝛼0

�� and 𝛼0
�� of both CR3BPs control the geometry of the conneion, but this is reduced to a 

single parameter 𝛼0 (= 𝛼0
�� − 𝛼0

��) as only the relative phasing between Sun-Earth and Earth-
Moon systems is necessary (Fantino et al. 2010). e concept is illustrated in Figure 8a, where a 
segment of arcs in the Earth-Moon system (shown in blue) has been converted into the Sun-
Earth barycentric synodical reference frame. 

 
Figure 8: (a) Both unstable manifold from Su-Earth L1 (black) and stable manifold from Eart-

Moon L2 (blue) shown in Sun-Earth synodical barycentric reference frame, (b) unstable manifold
from Sun-Earth L1 LPO (black) and initial states leading to lunar impa (blue) show in Sun-
Earth synodical barycentric reference frame, and (c) unstable manifold from Su-Earth L1 LPO 
(black) and initial states leading to lunar quas-capture (blue) shown in Sun-Earth synodical 

barycentric reference frame. 

A wide seleion of lunar arrival states from the lunar survival map that lead to successful capture 
and to lunar impa are propagated backwards in time and the obtained arcs are translated into 
the Sun-Earth CR3BP. e resulting plot of lunar arrival states resulting in impa are shown in 
Figure 8b, and for capture in Figure 8c, for an initial orbit phasing of 𝛼0 = 0.  In both figures,
these arcs (a group of arcs 𝒔�) are shown in blue while a segment (a group of arcs 𝒔���) of an 
unstable invariant manifold is plotted in black for the sake of comparison. 

e conneion between the trajeory arcs from both CR3BPs is made on a plane 𝑷 at 
𝑥 = 1 − 𝜇 in the Sun-Earth CR3BP (the barycentre of the Earth-Moon system) whose normal 
veor is 𝒆� = [1,0,0]. An arc 𝝈� flowing towards the Moo—after having its states converted 
𝝈�(𝛼0) → 𝒔� from Earth-Moon to Sun-Earth reference frame—thus has a certain position and 
velocity 𝒔�

1−� when it interses the plane 𝑷. is arc must then be conneed to an arc 𝒔��� on 
the unstable manifold leading away from the Sun-Earth system libration point. is second arc 
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also interses plane 𝑷, but at 𝒔���
1−�. For the matching of the arcs to be corre the y and z (if the 

problem is entirely planar z components can be disregarded) position components of 𝒔�
1−� should 

be equal to those of 𝒔���
1−�. e two conneing arcs will have a certain disparity in velocity, which 

is correed for by manoeuvre. Poincaré seions at 𝑥 = 1 − 𝜇 (the barycentre of the Earth-Moon 
system) in the Sun-Earth CR3BP for velocity components 𝑥 ̇ and 𝑦 ̇ illustrate this in Figure 9, 
which shows the interseion of the unstable manifold from the Sun-Earth libration point orbit in 
black and the interseing points of the flow leading towards seleed lunar impa states n blue 
for the case of an initial orbit phasing of 𝛼0 = 0. e insets show the (exaggerated in this case for 
the sake of clarity) velocity change of 𝑥 ̇ and 𝑦 ̇ to jump from the Sun-Earth CR3BP unstable 
manifold unto a seleed arc interseion 𝒔�

1−�. Figure 10 shows the same interseions as in 
Figure 9, but for seleed lunar capture, instead of impa, states. 

 

Figure 9: Poincaré seions of  𝑦̇ − 𝑦 (left) and 𝑥̇ − 𝑦 (right) phase space at 𝑥 = 1 − 𝜇 in the Sun-
Earth CR3BP, showing the interseions from the unstable manifold from theL1 LPO (black line) 

and the interseions from the initial states leading to lunar impa blue points). 
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Figure 10: Poincaré seions of  𝑦̇ − 𝑦 (left) and 𝑥̇ − 𝑦 (right) phase space at 𝑥 = 1 − 𝜇 in the Sun-
Earth CR3BP, showing the interseions from the unstable manifold from theL1 LPO (black) and 

the interseions from the initial states leading to lunar capture (blue) 

If the arcs 𝒔� leading towards the Moon are numerically integrated for a sufficiently long period 
of time, they will cross the interseion plane multiple times. For each of these interseions a 
conneion can be attempted with the unstable manifold. Naturally, transfer duration will 
increase when the conneion is made at a later interseion (the increase in transfer time is 
dependent on the specific arc . Another consideration for a trajeory where the conneion is 
delayed until a later interseion is the gravitational influence of the Sun. As the arcleading from 
the interseion plane towards the Moon takes more and more time (and also generally starts 
further out on plane 𝑷) the ability of the Earth-Moon CR3BP to approximate the full body 
dynamics degrades. 

e general solution space for a set of lunar arrival states and a particular libration point orbit can 
be effeively and quickly mapped by computing and storing the unstable manifold trajeory arcs 
𝒔��� from the Sun-Earth libration point orbit and the trajeory arcs 𝝈� flowing towards the 
lunar target states. Once this is computed, the transformation of the lunar target state arcs from 
Earth-Moon to Sun-Earth synodical barycentric reference frame (𝝈�(𝛼0) → 𝒔�) can be 
performed for a range of values of the orbital phasing angle 𝛼0. For each lunar target state 
trajeory arc and value of orbital phasing angle 𝛼0 the best matching arc flowing from the Su-
Earth libration point orbit can be found. e criterion is the lowest ∆v to conne both arcs, 
which at the same time satisfes the positional difference on the Poincaré seion (on plane 𝑷) to 
within set tolerance. Promising pairs of interseions can then be refined furthe  by way of an 
optimization process. A number of matching pairs can be found based on ranking, which then 
serve as initial guesses for an optimization process using an SQP gradient solver (Nocedal and 
Wright 2006). e optimization initially only accounts for two design parameters 𝛼0 and 𝛽. is 
can be expressed as the design variable veor 
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𝐱 = [𝛼0 𝛽], [19] 

where 𝛼0 is the initial orbit phasing and 𝛽 is the position along the Sun-Earth libration point 
orbit expressed as a curvilinear coordinate within the domain of [0, 2𝜋] where 0 is chosen as the 
position on the libration point orbit at 𝑦 = 0 and with the smallest value for 𝑥. e same 
position along the circuit of the libration point orbit is reached at 2𝜋 after clockwise rotation. 
Note that for initial optimization both parameters are assumed to be independent of each other. 
When translating this problem to a full ephemeris model an initial time will both proscribe the 
geometry of the planets 𝛼0 as well as the position of the spacecraft on the LPO 𝛽. e state of the 
arc 𝒔��� flowing from thelibration point orbit at the interseion with plane 𝑷 at 𝑥 = 1 − 𝜇 is 

denoted as 𝒔���
1−� = �𝐩���, 𝐩̇����, where 𝐩��� and 𝐩̇��� are the 3 element position and velocity 

veors at plane 𝑷 in the Cartesian coordinate system in the Sun-Earth synodical reference frame, 
respeively. In a similar fashion, the state from the arc 𝒔� flowing towards the lunar vicinity at
the interseion with the plane 𝑷 is denoted as 𝒔�

1−� = [𝐩�, 𝐩̇�]. e objeive of the 
optimization is to minimize the velocity change necessary to change the velocity at the 

interseion such that the velocity is matched between 𝒔���
1−� and 𝒔�

1−�. is can be expressed as 

𝑓(𝒙) = ∆𝑣 = ��𝐩̇��� − 𝐩̇���. [20] 

e positional difference between the two arcs as they meet at plane 𝑷 is added as an equality 
constraint 

𝑐(𝒙) = ��𝐩��� − 𝐩��� [21] 

to the optimization process. is ensures any remaining gap between the arcs meeting at plane 𝑷 
is closed. Once a single optimization pass has been completed (after having either satisfied
constraint tolerances or having reached the maximum number of evaluations) the design variable 
veor is expanded to 

𝐱 = [𝛼0 𝛽 ∆𝑣��� 𝛾��� 𝛿��� ∆𝑣� 𝛾� 𝛿�], [22] 

where two manoeuvres are introduced at departure from the libration point orbit and at arrival 
near the Moon (at the position of the chosen lunar target state). ∆𝑣��� and ∆𝑣� are the 
magnitudes of the manoeuvres, 𝛾��� and 𝛾� are the respeive in-plane right ascensions of the 
manoeuvres (counted from the tangential direion of the velocity change veor to its projeion 
on the orbital plane), and 𝛿��� and 𝛿� are the respeive out-of-plane declinations of the 
manoeuvres (the angle between projeion of the velocity change veor on the orbital plane and 
the velocity change veor itself). In the case of a planar transfer from a planar Lyapunov orbit the 
out-of-plane declinations for both manoeuvres are zero. e optimization process is now repeated 
with the same objeive and constraints. 
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5. Disposal Results for an L2 Lyapunov Orbit 
As a case study, the prior described algorithm, lunar survival map, and event map are now used to 
generate ∆v maps for both capture and impa transfers from an initial libration orbit (in this case 
a planar Lyapunov orbit) at L2 that shares the in-plane amplitude charaeristics of the Herschel 
spacecraft (ESA, 2013). Both of these orbits are shown in Figure 11. e orbit is defined in the
Sun-Earth CR3BP by a Jacobi constant of 𝐽 = 3.00080469, an x amplitude of 3.2816·10-3 and a 
y amplitude of 1.03808·10-2 (non-dimensional units). 

 

Figure 11: Representation of Herschel orbit in the CR3BP (back) and a planar Lyapunov orbit (blue) 
sharing the same amplitude along x and y axes. 

A digital supplement is available separately, which also includes two further test cases: a second 
planar Lyapunov orbit representing a planar image of the operational orbit of the SOHO 
spacecraft (Felici 1995) at L1 and a full CR3BP representation of the operational orbit of SOHO 
(with out-of-plane z component) to test the sensitivity of the procedure (using planar lunar arrival 
states from the survival map) to non-planar transfers. 

Given the libration orbit defined above,  a subset of lunar arrival states is seleed for the 
generation of the results. In the case of capture, states with an excellent survival time of at least 65 
days are seleed from the map (regardless of whether the orbit deteriorates by impaing the 
Moon, or escaping past L1 or L2). For the case of impa, only those states that impa the Moon, 
and with a not too long survival time (less than 30 days) are seleed. 

e results for lunar capture are provided in Figure 12 and Figure 13. ese results were created 
by sampling the initial orbital phasing angle values 𝛼0 at 1° intervals. e results presented in the 
figures are not fully optimied but fulfil relatively striconstraints on the distance between the 

meeting points 𝒔���
1−� and 𝒔�

1−� of the arcs at plane 𝑷. In the worst case the constraint violation at 
plane 𝑷  may be up to 1500 km, but most transfers have a difference of a few 100 km. ese 
constraint violations can be reduced by using the optimization process in Seion 4. Figure 12 
shows the ∆v cost in m/s (ranging from 0 to 100 m/s) for each seleed lunar arrival state for the 
very first interseion that occurs at the interseion plan 𝑷. Figure 13a shows the ∆v cost in m/s 
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for the first 6 interseions   of each arc 𝒔� with the interseion plane. Multiple crossings are 
achieved by increasing the numerical integration time for each arc; instead of halting propagation 
after the first interseion it is halted after a number of successive interseions with plane𝑷 (note 
that). A plot showing the best ∆v value found from among all first 6 interseions per lunar arrival
state is given in Figure 13b. 

e lower area of Figure 12 for the L2 ranges from near-zero to ca. 30 m/s ∆v cost. e lowest 
value found in the first interseion is 1.526 m/s (before optimization).        v cost is not 
substantially improved in the second interseion (Figure 13a) with the lowest value being 1.424 
m/s. Sampling further seions provides no performance benefit in this case 

 
Figure 12: ∆v map of the 1s interseion for lunar capture from Lyapunov orbit at L2. 

 
Figure 13: (a) ∆v maps of the first 6 interseions for lunar capture from Lyapunov orbit at2 and (b) 

∆v map of the best results from the first 6 interseion for lr capture from Lyapunov orbit at L2. 

e results for lunar impa are given in Figure 14 and Figure 15. As was the case for lunar 
capture, the results were created by sampling the initial orbital phasing angle values 𝛼0 at 1° 
intervals. e results presented in the figures are not fu   lly optimized but fulfi    the same 

constraints on the distance between the meeting points 𝒔���
1−� and 𝒔�

1−� of the arcs at plane 𝑷 as 
was the case for lunar capture. Figure 14 shows the ∆v cost in m/s (ranging from 0 to 150 m/s) 
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for each seleed lunar arrival state for the very first interseion that o   ccurs at the interseion  
plane 𝑷. Figure 15a shows the ∆v cost in m/s for the first 6 interseions of each arc𝒔� with the 
interseion plane. Multiple interseions are achieved by increasing the numerical integration 
time for each arc; instead of halting propagation after the first interseion it is    halted after a 
number of successive crossings with plane 𝑷. A plot showing the best ∆v value found from 
among all first 6 interseions per lunar arrival state is given inFigure 15b. 

As can be seen from the figures the seleed lunar arrival states that lead to impa cover a much
wider portion of the generated survival map than those states that lead to capture. Conneions 
between the libration point orbit and lunar impa can be achieved for a number of lunar arrival 
states at near-zero ∆v cost within the first interseio , before optimization. e lowest value 
found in the first interseion is   2.19 m/s. e ∆v cost remains between 1 and 3 m/s for 
succeeding interseions (Figure 15a). 

 
Figure 14: ∆v map of the 1s interseion for lunar impa from Lyapunov orbit at L2. 

  
Figure 15: a) ∆v maps of the first 6 interseions for lunaimpa from Lyapunov orbit at L2 and b) 

∆v map of the best results from the first 6 interseion for lunar impa from Lyapunov orbit a2. 

Four example trajeories, after optimization, are plotted in Figure 16, where the libration orbits 
are shown in red, the segments after the transfer has reached its lunar arrival state are shown in 
blue, and the conneion manoeuvres for the trajeories are shown as stars. e first trajeory (a)
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is a planar trajeory from the libration point orbit at L1 that leads to impa upon the lunar 
surface, costing slightly less than 1 m/s to conne the two legs. e second trajeory (b) is a 
planar trajeory from the libration point orbit at L2 that is captured by the Moon for at least 3 
months before the spacecraft exits the lunar vicinity via L1 in the Earth-Moon system. is 
conneion manoeuvre cost 1.6 m/s. e third trajeory (c) shows a capture trajeory from L1 
where two interseions occur before the Sun-Earth and Earth-Moon legs are conneed, costing 
12 m/s. e fourth trajeory (d) shows a non-planar example (costing 142 m/s to conne) of a 
lunar capture, including a side view of the trajeory. 

 

Figure 16: Plots of example trajeories: (a) L1 lunar impa, (b) L2 temporary lunar capture, (c) L1 
temporary lunar capture with 2 interseions, and (d) non-planar L1 capture in the Sun-Earth 
synodic reference frame. 

6. Redesign of the transfer using Solar Pressure 
is seion investigates the use of a hybrid propulsion system, combining solar radiation pressure 
and impulsive maneuvers, to complete the transfer. Alongside the classical definition of the 
CR3BP, a modified version, a  dding solar radiation pre   ssure (Simo and McI   nnes 2 009), is
employed to study the trajeory in the Earth-Moon CR3BP. e larger primary m1 is the Earth 
and the smaller primary m2 is the Moon. e two primaries move about their centre of mass in a 
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circular orbit while the third body is of negligible mass such that it is unable to influence the
movement of the two primaries (cf. Figure 17). 

 

Figure 17: Schematic geometry of circular restried -body problem (z-axis pointing out from paper). 

e equations of motion now change from those given in equation [1] to 

𝑑2𝐫
𝑑𝑡2

+ 2𝛚 × 𝑑𝐫
𝑑𝑑

+ ∇𝑈(𝐫) = 𝒂, [23] 

where 𝒂 is the introduced acceleration of the solar radiation pressure. When the solar radiation 
pressure is taken into account for the Earth-Moon set of primaries, the acceleration due to the 
solar radiation pressure is defined a 

𝒂 = 𝑎0(𝐒 ⋅ 𝒏)2𝒏, [24] 

where 𝑎0 is the magnitude of the solar radiation pressure acceleration, 𝒏 is the unit veor normal 
to the surface of the refleive surface of the spacecraft, and𝐒 is the direion veor of sunlight 
given by 

𝐒 = [cos(𝑤�𝑡 + 𝑆0) −sin(𝑤�𝑡 + 𝑆0) 0], [25] 

where 𝑤� is the angular rate of the sunlight veor in the synodic reference frame. S0 represents 
the initial direion of the sunlight at t0 (if this term is omitted the direion of sunlight is initially 
direly along the axis of the primaries from the larger primary Earth to the smaller primary). e 
angular rate of the sunlight veor 𝑤� can be determined by subtraing the dimensionless value 
of the rotation rate of the Earth about the Sun from the rotation rate of the Moon about the 
Earth (equal to unity in the dimensionless system), obtaining 𝑤� = 0.923 as the angular rate of 
the sunlight in the dimensionless synodic reference frame. 

e magnitude of the solar radiation pressure 𝑎0 within the dimensionless Earth-Moon system is 
chosen based on the lightness number 𝜆, which is a dimensionless parameter defined by the ratio
of the acceleration experienced by the refleive surface normal to the sun line and the Sun’s local
gravity field. At 1 AU this is defined by (from Dachwald et al. 2002)  
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𝜆 = 𝑎�
5.93 ⋅ 103 𝑚/𝑠2, [26] 

where 𝑎� is the charaeristic acceleration given by 

𝑎� = 𝑃���1��

𝐴
𝑚

= 2𝜂𝑃01��

𝐴
𝑚

. [27] 

Here the area to mass ratio 𝐴/𝑚 is a parameter of the spacecraft and 𝑃���1��
 is the effeive 

pressure aing upon the refleive surface at 1 AU distance from the Sun.An aluminium coated 
plastic filmwith an efficiency of 85% (𝜂 = 0.85) is assumed. e solar radiation pressure at 1 AU 
is 𝑃01��

= 4.4563 ⋅ 10−6 𝑁/𝑚2. With these parameters and an assumed value for the 
spacecraft’s area to mass ratio the lightness number can be computed and used to serve as the 
acceleration magnitude 𝑎0. While the spacecraft moves within the Earth-Moon CR3BP the 
distance from the Sun is considered to remain constant at 1 AU such that the scalar magnitude of 
the solar radiation pressure remains constant throughout the trajeory arc. 

e refleive surface can be controlled passively such that the spacecraft is generally always facing
the Sun via the use of particular shapes (e.g. a cone). A more aive control is considered here, 
where the refleive surface is contro   lled using    locally optimal control law obtained from 
maximising the change in velocity along the velocity veor of the spacecraft. is is derived from 
studying the geometry of the surface and incoming sunlight veor (McInnes 2004), and can be 
written as 

𝛾 = atan�3 tan𝛼
4

+
√

9 tan2 𝛼 + 8
4

�. [28] 

e angle 𝛼 is defined a 

𝛼 = − asin(𝐞� ⋅ 𝐒), [29] 

where 𝐞� and 𝐒 represent the unit veor of velocity of the spacecraft and the unit veor of the 
sunlight direion, respeively. e angle 𝛾 is the angle between sunlight unit veor 𝐒 and the 
unit veor 𝒏, which definesthe spacecraft’s surface pointing direion. is angle 𝛾 is measured 
in the plane spanned by 𝐒 and 𝐞�. To locally maximize the increase of energy the rotation is 
positive, while for local maximization of the decrease of energy the rotation is in the opposite 
direion (−𝛾). If 𝐒 = 〈𝑥, 𝑦, 𝑧〉 and 𝐒 × 𝐞� = 〈𝑢, 𝑣, 𝑤〉 then the rotation can be written as 

𝒏 =
⎣
⎡

−𝑢(−𝑢𝑢 − 𝑣𝑣 − 𝑤𝑤)(1 − cos 𝛾) + 𝑥 cos 𝛾 + (−𝑤𝑤 + 𝑣𝑣) sin 𝛾
−𝑣(−𝑢𝑢 − 𝑣𝑣 − 𝑤𝑤)(1 − cos 𝛾) + 𝑦 cos 𝛾 + (𝑤𝑤 − 𝑢𝑢) sin 𝛾
−𝑤(−𝑢𝑢 − 𝑣𝑣 − 𝑤𝑤)(1 − cos 𝛾) + 𝑧 cos 𝛾 + (−𝑣𝑣 + 𝑢𝑢) sin 𝛾⎦

⎤. [30] 

Once the unit veor 𝒏 is known the acceleration is known and the equations of motion can be 
numerically solved. 
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As a first indication of the influence of the solar radiation pressure and control law, transfers ar
generated (as described in seion 4) for a set of lunar target states leading to weak capture. is 
set is acquired by evenly sampling 1,000 times across the region of −0.05 < 𝑥̇ < 0 and 
−0.05 < 𝑦 < 0  in Figure 4, and seleing only those states leading to a survival time greater than 
2 months. An attempt is made to generate a valid transfer for each of the 1,000 lunar target states 
across the range of possible orbital phasing angle 𝛼0 at increments of 1° (thus in effe producing 
a theoretical maximum of 359,000 transfers). Each transfer consists of the most suitable arc 𝒔��� 
flowing from the LPO and the arc       𝒔� flowing towards the sele   d lunar target state. If the 
positional distance between the arcs at plane 𝑷 is greater than 1 km it is discarded. is analysis is 
performed with and without the effe of solar radiation pressure (assuming an area-to-mass ratio 
of 4). e plot in Figure 18 shows the areas where improvement was able to be made using a solar 
sail. Empty areas on the plot represent cases where either no improvement was found, or no 
transfer was found with a position mismatch at plane 𝑷 smaller than 1 km. Note that the points 
(which size on the plot have been exaggerated for legibility) showing a maximal (100 m/s) 
improvement are those where a transfer without solar pressure could not be found for less than 
100 m/s cost. 

 
Figure 18: Solution space mapping of the lunar target states leading to weak captureshowing the ∆v 

improvement of using a sail as a funion of lunar target stateand the initial orbital phasing angle 
𝛼0. 

e computation with solar radiation pressure is unfortunately more involved than without, as 
the initial orbital phasing angle 𝛼0 controls the initial direion of sunlight in the Earth-Moon 
system. us, to accurately account for the acceleration due to solar radiation pressure one must 
numerically integrate the arcs leading to the lunar arrival states for each particular value of the 
phasing angle 𝛼0, effeively multiplying computation time by the number of initial angles used. 
Using the simple control law in equation [28] it is already possible to achieve a less costly 
conneion for some—but not all—of the lunar target states. From the 1,000 states in Figure 18 
44.3% of them scored a better ∆v cost at the first crossing with plane𝑷, and 56.3% if further 
crossings are taken into account (all values of phasing angle are taken into account per target 
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state). Additionally, the better conneions occur at different values of the initial phasing angle 
𝛼0. Although the phasing angle is effeively a seleable parameter in the CR3BP it has an 
important effe when a transfer is translated into a full dynamic model using aual ephemeris, 
where the phasing angle controls what dates a particular transfer can be flown is means that 
the use of the refleive surface can improve the launch window of spacecraft by a          llowing for
departure from the periodic orbit on more dates in a particular month.  

Corresponding Poincaré seions (at the previously definedplane 𝑷) for a spacecraft with an area 
to mass ratio of 4 are shown in Figure 19a for the 𝑦 − 𝑥 ̇phase space and in Figure 19b for the 
𝑦 − 𝑦 ̇phase space for the case of an initial orbital phasing 𝛼0 = 0. e colouring from light blue 
to purple in both figures indicates further interseions at a prior date (as the numerical         
integration proceeds backwards in time). As can be seen, despite a fixed initial orbital phasing,use 
of a sail can decrease the cost to conne arcs by bringing interseion points closer to the unstable 
manifold flowing from the Su-Earth libration point orbit on the phase space. 

 
Figure 19: Poincaré seions of (a) 𝑥-̇𝑦 and (b) 𝑦-̇𝑦 phase space at plane 𝑷 in the Sun-Earth CR3BP, 

showing the interseions from the unstable manifold from theL1 LPO (black) and the successive 
interseions from the initial states at the Moon for a spacecraft with area to mass ratio 4 

7. Conclusions 
An algorithm has been presented that efficiently generates transfers from Sun-Earth libration 
point orbit to the Moon. ese transfers can then serve as the basis for further optimization or as 
the starting point for a transfer in a full ephemeris model. It has been shown that by using the 
presented survival and event maps lunar impa or weak capture can be direly targeted at low 
cost in the planar problem. e computational intensive parts of the algorithm have to be 
computed once; the maps are not linked to the particular problem and thus can be stored for 
future use. Numerical propagation for the arcs from a particular LPO have to be performed only 
once and then stored. Due to these fas, the entire search space (across the range of orbital 
phasing) can be quickly scanned in order to locate where promising initial guesses to generate 
trajeories lie. Using a basic control law it has been shown that the use of solar radiation pressure 
can be used to improve transfer cost to achieve conneion to particular regions of the survival 
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maps. Future work will include the generation and study of survival maps with differing Jacobi 
constant (for instance matching the energy of the map and the LPO) and extending the maps to 
include a non-planar (z) component.  
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