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Abstract. Acin et al. [13] introduced a unified framework for the study of no-

signalling correlations. Such a framework is based on the notion of local quantum

measurements, but, in order to account for beyond-quantum correlations, global

pseudo-states that are not positive semidefinite are allowed. After a short review

of the formalism, we consider its use in the quantification of both general non-

local and beyond-quantum correlations. We argue that the unified framework for

correlations provides a simple approach to such a quantification, in particular when the

quantification is meant to be operational and meaningful in a resource-theory scenario,

i.e., when considering the processing of resources by means of non-resources. We relate

different notions of robustness of correlations, both at the level of (pseudo-)states

and abstract probability distributions, with particular focus on the beyond-quantum

robustness of correlations and pseudo-states. We revisit known results and argue

that, within the unified framework, the relation between the two levels—that of

operators and that of probability distributions—is very strict. We point out how

the consideration of robustness at the two levels leads to a natural framework for the

quantification of entanglement in a device-independent way. Finally, we show that the

beyond-quantum robustness of the non-positive operators needed to achieve beyond-

quantum correlations coincides with their negativity and their distance from the set of

quantum states. As an example, we calculate the beyond-quantum robustness for the

case of a noisy Popescu-Rohrlich box.
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1. Introduction

Bell [1] proved that correlations that arise classically cannot reproduce some of the

correlations allowed by quantum mechanics [2]. One could say that quantum correlations

require enlarging our view of what correlations can exist between distant systems.

Taking a slightly different point of view, one can interpret this as a limitation of classical

correlations: they are not as strong as instead possible in the quantum setting, which

we believe to constitute the real physical setting of our world.

Quantum correlations, albeit stronger than classical, are not arbitrary [3]. Most

importantly, they respect the so-called no-signalling principle, i.e., they cannot lead to

instantaneous communication. While one can argue that the no-signalling condition

is somewhat built-in in the quantum formalism, the past has seen attempts to find

ways to use non-local correlations, arising from entanglement [4], for faster-than-light

communication [5]. The refutation of such attempts has been instrumental in the

establishment of the no-cloning theorem [6, 7] and in the development of quantum

information processing and of quantum cryptography [8]. It is then fair to say that the

study of the limits of quantum correlations themselves has been extremely fruitful.

Quite interestingly, Popescu and Rohrlich [9] provided examples of—unphysical,

it is believed—correlations that, although no-signalling, go beyond what possible

quantumly. Since that seminal paper, a lot of work has been devoted to the attempt to

“pin down” quantum correlations, often assuming as larger “potential” set of allowed

correlations than that of no-signalling correlations. From a foundational standpoint,

the effort is mostly directed to finding some operational and/or information-theoretic

principle that, together with, or extending, the no-signallling principle, would uniquely

identify quantum correlations among general no-signalling ones (see, e.g., [10] and [11]).

From the above remarks it should be clear that this is a worthwhile effort not only from a

foundational perspective: a better understanding of quantum correlations (and of their

limits) can have enormous repercussions from the applicative point of view. One example

of this is the development of device-independent quantum cryptography (see [12] and

references therein).

Acin et al. [13] (see also [14]) introduced a unified formalism to describe all no-

signalling correlations, even beyond quantum, in, we could say, “(at least partially)

familiar quantum terms”. Acin et al.’s formalism is based on the notion of local quantum

measurements, but, in order to account for beyond-quantum correlations, global pseudo-

states that are not positive semidefinite are allowed. In this paper we show how that

formalism can be used to understand and quantify correlations in a unified way, also

from a resource perspective.
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(a) Correlations as boxes (b) O-formalism

Figure 1: (a) Correlations are abstractly described as boxes with inputs (the choice

of local measurements) and outputs (the outcomes of the measurements). Such

inputs/outputs are classical (i.e., can be described and transmitted by classical bits)

and are represented by double lines. Information flows from left to right. (b) All

no-signalling correlations/boxes (even those the are not quantum) can be realized via

local measurements acting on a state (a normalized positive semidefinite operator)

or a pseudo-state (that is, a trace-one Hermitian operator that is not positive

semidefinite) O [13]: it always possible to “open the box” to reveal its (pseudo-)quantum

implementation. Single lines depict the transmission/flow of quantum information,

including the case of pseudo-states.

2. Preliminaries

2.1. Correlations

We will study correlations in a bipartite setting, involving the two parties Alice and Bob,

but many of the considerations and results can be easily extended to the multipartite

scenario. Correlations will be described abstractly in terms of conditional probability

distributions for the choice of a local measurements and the recording of the outcomes

of such measurements. Measurement choices will be denoted by x and y for Alice and

Bob, with outcomes labelled by a and b, respectively. Both measurement choices and

possible outcomes range within definite alphabets, e.g., x ∈ {0, 1, . . . , |X| − 1}, defining
some input and output dimensions, e.g., |X| for the number of choices of measurement

for Alice. In this paper we will not be concerned with such dimensions, which are

nonetheless considered fixed for a given “experiment”.

In this framework, the correlations that exist between Alice and Bob are described

by means of an ordered collection (a vector) ~p of numbers p(a, b|x, y), each giving the

probability of seeing the pair of outcomes (a, b) upon the choice of the measurement

pair (x, y). Thus, these numbers are all non-negative, p(a, b|x, y) ≥ 0, and satisfy

the normalization
∑

a,b p(a, b|x, y) = 1 for all (x, y), from which also the bound

p(a, b|x, y) ≤ 1 follows.

We have already used the terms “input” and “output”, and indeed we will think

of ~p as of a box accessed independently by the two parties—users—Alice and Bob, as

depicted in Fig. 1(a). For any fixed number of possible inputs/ouputs, we can consider
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the space of all allowed ~p, and introduce a meaningful, physically-motivated classification

of these probability vectors ‡.

2.1.1. Local correlations Local correlations are those that can be expressed as

pAB(a, b|x, y) =
∑

i

qip
i
A(a|x)piB(b|y) (1)

where piA(a|x) are local conditional probability distributions for Alice (similarly for Bob)

that depend also on i, and qi are probabilities, i.e., qi ≥ 0 and
∑

i qi = 1. That is, local

correlations are convex combinations of uncorrelated local probabilities distributions.

With the use of subscripts, we have emphasized here the corresponding parties; such

subscripts will be omitted whenever confusion does not arise. Notice that in vector

notation we could write ~pAB =
∑

i qi
~piA ⊗ ~piB. We will denote the space of all local

correlations (for a fixed choice of number of inputs/outputs) by L. If a probability ~p

does not admit the decomposition (1), then we call it non-local.

2.1.2. Quantum correlations Quantum correlations are those that can be expressed

as

pAB(a, b|x, y) = Tr(MA
a|x ⊗NB

b|yρAB), (2)

where ρAB is a distributed quantum state, andMA
a|x and N

B
b|y are the elements of positive-

operator-valued measures (POVMs), one for each choice of measurement: MA
a|x ≥ 0

∀a, x,∑aM
A
a|x = 1A ∀x, and, similarly NB

b|y ≥ 0 ∀b, y,∑bN
B
b|y = 1B ∀y. Since it will be

important in the following, we remark that ρAB is a quantum state if and only if ρAB ≥ 0

an Tr(ρAB) = 1. We will denote the space of all quantum correlations (for a fixed choice

of number of inputs/outputs) by Q. Notice that, even if the number of inputs/outputs

is fixed, we allow the realization of the box (i.e., probability distribution) with quantum

systems of arbitrary dimensions (correspondingly, 1A is the identity operator on the

“underlying” arbitrary quantum system of Alice).

2.1.3. No-signalling correlations No-signalling correlations are those that respect
∑

a

p(a, b|x, y) =
∑

a

p(a, b|x′, y) ∀x, x′, (3)

∑

b

p(a, b|x, y) =
∑

b

p(a, b|x, y′) ∀y, y′. (4)

These conditions allow one to define local conditional probabilities distributions, e.g.,

pA(a|x) =
∑

b p(a, b|x, y). Notice that in absence of the no-signalling conditions, there

should be in general a dependence on y on the left-hand side of the last equation. The

lack of such a dependence is exactly what constitutes no-signalling: even if Bob changes

his input, he cannot send a message to Alice by modifying the probability distributions

‡ Each ~p is actually a collection of conditional probability vectors, but for the sake of brevity we may

refer to it as probability vector.
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Figure 2: Hierarchy of correlations. Local correlations (L) are a strict subset of quantum
correlations (Q), which in turn are a strict subset of no-signalling correlations (NS).
The figure depicts also the fact that L and NS are polytopes; this is not the case for

Q [2].

she sees locally. We will denote the space of all no-signalling correlations (for a fixed

choice of number of inputs/outputs) by NS.
We observe that both local and quantum correlations are no-signalling. This follows

immediately by inspection, given (1) and (2). Notice that in the quantum case this is

built-in in the formalism thanks to the fact that, e.g.,
∑

bN
B
b|y = 1B ∀y, with the right-

hand side of the equality independent of y. On the other hand, classical correlations are

a subset of quantum correlations (with strict containment, as Bell first showed [2]), so

overall we have (see Fig. 1b)

L ( Q ( NS. (5)

The last is also a strict containment, as proven by Popescu and Rohrlich [9] (see

Section 4.2).

2.2. Separability and entanglement

Bipartite quantum states can be classified in terms of their bipartite structure. We call

separable (or unentangled) the states that can be expressed as convex combination of

local product states, i.e.,

σAB =
∑

i

piσ
i
A ⊗ σi

B (6)

and entangled the states that do not admit such a decomposition. Werner [15] introduced

this general notion for mixed-state entanglement, and showed that the relation between

the notions of locality/non-locality and separability/entanglement is at best non-trivial.

On one hand, it is easy to verify that every separable state gives raise only to local

correlations, independently of the local measurements. Also, it is easy to check that

every local ~p admits a realization (via (2)) by means of some separable state. On the
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other hand, quite more surprisingly, there are entangled states that via (2) give only

raise to local correlations [15]. This fact has led to a number of attempts to find a

more “faithful” relation between quantum states and correlations, or, more in general,

between quantum states and non-local features of correlations, going beyond (2), so to

potentially reveal the “hidden” non-locality of all entangled states [2].

We will denote by D the set of all density matrices, and by S the set of all separable

density matrices. As clear from what we already said, S ( D.

2.3. Unified framework for correlations

Equation (2) establishes a (not one-to-one) two-way mapping between quantum states

and quantum correlations, thus including local correlations. In [13] (see also [14]) a

unified framework for correlations (valid also in the multipartite setting) very similar to

(2) was introduced for all no-signalling correlations. It reads (see Figure 1(a))

pAB(a, b|x, y) = Tr(MA
a|x ⊗NB

b|yOAB), (7)

where we still use local POVMs, but the only request on the Hermitian operator OAB,

which we could call pseudo-state, is that it is normalized, Tr(OAB) = 1, and that,

together with a—possibly very specific §—choice of POVMs, gives raise to bona fide

correlations, i.e., conditional probabilities that are positive—normalization is ensured

by the fact that OAB has unit trace. In [13] it was proven that a (bona-fide) ~p is no-

signalling if and only if it is possible to choose a pseudo-state O and local POVMs such

that (7) is satisfied. This means that also a no-signalling ~p that is not quantum can

be represented within the quantum formalism at the cost of dealing with “non-positive

states”. This opens up the possibility of looking at general correlations (even beyond

quantum) in a novel, unified way that may shed light on the properties of quantum

correlations themselves. We remark that the proof presented in [13] is constructive:

for a given no-signalling ~p, a recipe is given to find a specific choice of measurements

and of O such that (7) is satisfied. In general, we write O → ~p to indicate that there

exist local measurements such that (7) holds. In the case we want to specify which

particular choice of O and of local measurements {Ma|x}, {Nb|y} leads to ~p, we write

(O, {Ma|x}, {Nb|y}) → ~p.

We will denote by O the set of all bipartite normalized (i.e., of unit trace) Hermitian

operators, i.e., pseudo-states. Obviously S ( D ( O.

3. Robustness measures of correlations

In this paper we focus on the issue of quantification of correlations. We will adopt a

resource-theory view that aims to quantitatively differentiate between the various kinds

of correlations that we have introduced: general no-signalling, quantum and local.

§ A pseudo-state that is not positive semidefinite may lead to non-positive pseudo-probability

distributions if the POVMs entering (7) are chosen arbitrarily.
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Figure 3: Robustness of v with respect to the set convex and closed set S; v can be

expressed as an affine combination of w± ∈ S.

3.1. Robustness

Consider a real affine space A such that (1− a)v1 + av2 ∈ A for any v1, v2 ∈ A, and for

any a ∈ R. The robustness of an element v ∈ A with respect to a closed convex subset

S of A that spans the latter, can be generically defined as

rS(v) := min

{

t

∣

∣

∣

∣

t ≥ 0,
v + tw

1 + t
∈ S for some w ∈ S

}

(8)

We can define rS(v) as a minimum because we suppose that S is convex and closed, and

spans A (via affine combinations), so that rS(v) < +∞ is achieved for all v ∈ A. On the

other hand, one has rS(v) = 0 if and only if v ∈ S. Further, from the definition it follows

that it is possible to express v as an affine combination v = (1+ rS(v))w
+− rS(v)w

− of

two elements w± of S (see Fig. 3). Robustness expresses how much “noise”—in terms

of random mixture with an element of S, w−—is enough to “move” v into the set S,

making it become w+.

It is clear that in this sense, the robustness is a quantifier of “how far” from being

part of S the element v is. In our setting, one can define several “robustnesses”, both

for non-signalling bipartite correlations and for (pseudo-)states:

rL(~p) := min

{

t

∣

∣

∣

∣

t ≥ 0,
~p + t~pL
1 + t

∈ L for some ~pL ∈ L
}

, (9)

rQ(~p) := min

{

t

∣

∣

∣

∣

t ≥ 0,
~p + t~pQ
1 + t

∈ Q for some ~pQ ∈ Q
}

, (10)

rS(O) := min

{

t

∣

∣

∣

∣

t ≥ 0,
O + tσS
1 + t

∈ S for some σS ∈ S

}

, (11)

rD(O) := min

{

t

∣

∣

∣

∣

t ≥ 0,
O + tρD
1 + t

∈ D for some ρD ∈ D

}

. (12)

We remark that we used the fact that local correlations span NS [16] and that

separable states span the set of bipartite states [17], and hence the set of pseudo-states.

The quantities rL and rQ, respecting rL ≥ rQ, have already been considered in, for

example, [16]. The quantity rS was originally defined in [18] for bipartite states, and
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is known as robustness of entanglement: here we extend it to pseudo-states. Finally,

rD(O) has appeared previously in literature in the context of the study of negativity of

entanglement [27]. Clearly, rS ≥ rD.

3.2. Robustness in the unified operator formalism

Given the two-way mapping of (7) one can also introduce “hybrid”, less trivial notions

of robustness, not directly fitting in the framework of (8). For example, for fixed ~p we

can define

rS(~p) := inf
O→~p

rS(O), rD(~p) := inf
O→~p

rD(O), (13)

where the infima are taken over all O such that O → ~p. Notice that we revert to

considering infima because we are not constraining the underlying dimension of O, but

we will see that the infima are actually minima. Also, notice that the quantities are

well defined because of the construction of [13], which ensures that there is at least one

O such that O → ~p. The two measures rS(~p) and rD(~p) quantify how far from separable

and positive semidefinite, respectively, any pseudo-state O needs to be at least in order

to give raise to ~p via some local measurements. On the other hand, for fixed O we can

define

rL(O) := sup
O→~p

rL(~p), rQ(O) := sup
O→~p

rQ(~p), (14)

where the suprema are over all possible local measurements, with an arbitrary number

of inputs and outputs—hence the use of the suprema, rather than maxima. These latter

two measures quantify how non-local (quantum) a correlation vector ~p generated via

local measurements on O can be. Notice that if O is not positive semidefinite or an

entanglement witness [13], then there will necessarily be local measurements such that

the resulting ~p is not a good probability vector, because some of the entries will be

negative. In such a case one can still calculate the robustness of the pseudo-probability

distribution ~p with respect to L and Q. Alternatively, one can potentially consider an

additional restriction, imposing that only measurements leading to bona fide probability

distributions are allowed.

Suppose that O is such that O → ~p. By definition of rS(O), there exists a separable

state σS such that (O+rS(O)σS)/(1+rS(O)) is separable. By locally measuring the latter

state with the same measurements that give the mapping from O to ~p, we obtain a local

probability distribution (~p + rS(O)~pL)/(1 + rS(O)), with ~pL ∈ L, because the mapping

from operators to boxes—for fixed measurements—is linear, and local measurements

performed on a separable state always give raise to a local probability distribution. Since

this is true for any O such that O → ~p, this proves that rL(~p) ≤ infO→~p rS(O) = rS(~p).

One similarly proves that rQ(~p) ≤ rD(~p). We will now see that these are actually

equalities. Before we proceed, we need a simple lemma.
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Lemma 1. Given two probability distributions ~p and ~p′ such that (O, {Ma|x}, {Nb|y}) →
~p and (O′, {M ′

a|x}, {N ′
b|y}) → ~p′, then

(Õ, {M̃a|x}, {Ñb|y}) → ~̃p := (1− q)~p+ q~p′, (15)

with

ÕABCD := (1− q)OAB ⊗ |0〉〈0|C ⊗ |0〉〈0|D + qO′AB ⊗ |1〉〈1|C ⊗ |1〉〈1|D,
M̃AC

a|x :=MA
a|x ⊗ |0〉〈0|C +M ′A

a|x ⊗ |1〉〈1|C, (16)

ÑBD
b|x := NB

b|y ⊗ |0〉〈0|D +N ′B
b|y ⊗ |1〉〈1|D, (17)

for any q ∈ R.

Proof. By inspection: it is easy to check both that {M̃AC
a|x } and {ÑBD

b|x } are bona fide

POVMs (for fixed x and y, respectively), and that (15) is satisfied.

Proposition 2. It holds rL(~p) = rS(~p) and rQ(~p) = rD(~p).

Proof. We already argued that rL(~p) ≤ rS(~p) and rQ(~p) ≤ rD(~p). We will now explicitly

prove rL(~p) ≥ rS(~p); rQ(~p) ≥ rD(~p) can be proven along the same lines.

By definition of rL(~p), it holds that there are local ~p±L such that ~p = (1 +

rL(~p)~p
+
L − rL(~p)~p

−
L . Consider now separable O± and POVMs {M±

a|x}, {N±
b|y} such that

(O±, {M±
a|x}, {N±

b|y}) → ~p±L , which are known to exist [13]. Then we can follow the

construction of Lemma 1 to find an Õ = (1 + rL(~p))O+,AB ⊗ |0〉〈0|C ⊗ |0〉〈0|D −
rL(~p)O

−,AB ⊗ |1〉〈1|C ⊗ |1〉〈1|D such that Õ → ~p. Since O+,AB ⊗ |0〉〈0|C ⊗ |0〉〈0|D
and O−,AB ⊗ |1〉〈1|C ⊗ |1〉〈1|D are both separable in the AC : BD cut, we see that

rS(~p) = infO→~p rS(O) ≤ rL(~p).

The latter result means that the infima in (13) are achieved, and can be taken to

be minima. It is also worth remarking that, in the construction of Õ in the proof of

Proposition 2, it is not assured that Õ is a quantum state, even in the case where ~p is

quantum. Indeed, in our definition of rS(~p) we do not presuppose anything about O;

in particular, we do not assume that, in the case of a quantum ~p, an O achieving the

optimal value can always be chosen to be a quantum state. Nonetheless, we expect this

to be the case, which leads us to formulate the following conjecture.

Conjecture 3. If ~p ∈ Q, then there exists ρ ∈ D such that ρ→ ~p and rS(ρ) = rL(~p).

3.3. Device-independent bounds on entanglement

An approach to the quantification of the content of non-local correlations of a quantum

state similar in spirit to rL(O) was initiated in [19] and later developed by many

researchers (see [20] and references therein). Said approach is based on a decomposition

of ~p different than the one resulting from the evaluation of the robustness rL(~p). More

in detail, consider a convex decomposition

~p = (1− qNL)~pL + qNL~pNS . (18)
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Here 0 ≤ qNL ≤ 1 is the non-local weight in the decomposition (18), with ~pL ∈ L and

~pNS ∈ NS. One can further define qmin
NL (~p) as the minimum non-local weight over all

possible decompositions (18). The decomposition corresponding to the latter choice is

the best local approximation to ~p. The approach of [19] is then that of quantifying the

non-local content of a quantum state ρ as the maximum qmin
NL (~p) over all correlations

that can be obtained from ρ by local measurements.

We remark that the best local approximation has a correspondent at the level of

operators in the best separable approximation for quantum states [21]. For the latter,

consider decompositions

ρ = (1− qE)σS + qEρE, (19)

with 0 ≤ qE ≤ 1, σS ∈ S and ρE ∈ D. The best separable approximation corresponds to

the case where qE is minimized, giving raise to a parameter qmin
E (ρ).

A key aspect of both decompositions (18) and (19) is that the second term on the

right-hand side is constrained to be positive, i.e., a bona fide probability distribution and

a positive semidefinite operator, respectively. This prevents us from choosing qNL and

qE arbitrarily small. One then realizes that an approach similar to (19) does not have

an immediate correspondent for pseudo-states. That is, when we write, for example,

O = (1 − q)σS + qO′, with σS ∈ S and O′ another pseudo-state, we can always choose

q arbitrary small, by a suitable choice of O′. Notice that we would encounter the

same problem if the “noise” in (11) and in (12) were allowed to be arbitrary, i.e., a

pseudo-state, rather than separable or positive-semidefinite, respectively. Nonetheless

it is possible to define consistently a generalized robustness of entanglement, where one

considers the minimum mixing with any arbitrary—i.e., potentially entangled—state ρD
so that the resulting mixed operator is separable:

rGS (O) := min

{

t

∣

∣

∣

∣

t ≥ 0,
O + tρD
1 + t

∈ S for some ρD ∈ D

}

. (20)

This quantity was introduced and studied in [22, 23] for quantum states, but one can

consider it for pseudo-states as well, as we do. In the case of states, rGS is an entanglement

measure with operational meaning [24, 25]. Similarly, one can consider a generalized

locality robustness for correlations:

rGL (~p) := min

{

t

∣

∣

∣

∣

t ≥ 0,
~p+ t~pNL
1 + t

∈ L for some ~pNL ∈ NL
}

.

Clearly, rGS (O) ≤ rS(O) and r
G
L (~p) ≤ rL(~p).

Suppose that we are interested in assessing the entanglement of a distributed state

ρ = ρAB that is locally measured and leads to the establishment of correlations ~p. We

notice that the inequality rGL (~p) ≤ rGS (ρ) (≤ rS(ρ)) can be proved along similar lines

as rL(~p) ≤ rS(ρ) (see paragraph before Lemma 1 ‖), and can be used to lower bound

the robustness and generalized robustness of the (potentially unknown) underlying ρ.

‖ Equality cannot be proven as in Proposition 2, because of the constraint on the noise used in the

definition (20) of rG
S
.
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This lower bound does not depend on the details of the local measurements. Thus, it

constitutes a device-independent bound on the entanglement of the underlying state.

Similarly, the best local approximation of ~p and the best separable approximation of ρ

satisfy qmin
NL (~p) ≤ qmin

E (ρ). The latter fact is more or less explicitly remarked in, e.g., [20].

While a detailed study of this kind of device-independent bounds on entanglement

will be reported elsewhere [26], we remark here that the calculation of rGL (~p) corresponds

to the solution of a linear-programming problem, hence it is simple and straightforward,

at least numerically. It is also as faithful as possible for a device-independent bound: any

measured non-local ~p allows us to find a non-trivial lower bound for the operationally

meaningful rGS (ρ).

3.4. Local processing of correlations with side non-resources

The robustness quantifiers of correlations, as well as any other possible quantifier of

correlations, are interesting and potentially useful, but their meaningfulness is not

immediately apparent. The point is that they should at least behave meaningfully in

an operational framework. This is the case, for example, of entanglement measures [4].

Our approach here is to define the notion of local processing of a box with side “non-

resources”. Analyzing such processing is made simpler by working within the unified

framework for correlations summarized by (7).

As represented in Figure 4, a new box ~p′ (with inputs labelled x′, y′ and outputs

labelled a′, b′) can be “built” out of the box ~p, processing the latter with the help of a

shared (pseudo-)state ONR and local measurements. Here the subscript NR stands for

the fact that ONR is a non-resource, meaning that via local measurements on it alone—

that is, via (7)—it would give raise to non-resource boxes with respect to which ~p is

compared. For example, to study the non-locality of ~p, i.e., to compare it to local boxes,

ONR is chosen to be a separable state. Similarly, to discuss how beyond quantum ~p is,

ONR is chosen to be a bona fide quantum state, i.e., positive semidefinite. Notice that

two measurements per party are allowed: a pre-processing one (e.g.,M1 for Alice) before

providing the input for the box ~p, and a post-processing one (e.g., M2 for Alice) using

the output of ~p. Most importantly, M1 has both classical and quantum input/output,

and M2, albeit having only classical output, has both classical and quantum input.

Information between the first measurement and the second measurement “travels” not

only through ~p (which likely modifies it), but also along a quantum wire, which can

accommodate both quantum and classical information. So, for example, information

about Alice’s classical input x to ~p, i.e., the classical output of measurement M1, can be

imagined to be available also at the time of the second measurement M2. The quantum

wires allow us to consider any non-resource arising—via local measurements—from a

non-resource (pseudo-)state as being present from the very beginning, and incorporated

in ONR. This is the first simplification in the analysis due to the two-way relation (7).

A second simplification becomes apparent when the box ~p is “opened” (see

Figure 5). One realizes that each local processing—on Alice’s side and, independently
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Figure 4: Local processing of a box ~p with inputs (x, y) and outputs (a, b). Besides

local measurements, we allow the use of any side non-resource embodied by a shared

ONR. The result is a new box ~p′ with with inputs (x′, y′) and outputs (a′, b′). Classical

information flows from left to right along double lines; quantum information flows along

single lines.

Figure 5: Analysis of the local processing of a box ~p with side non-resources taking full

advantage of the O-formalism: ~p itself arises from local quantum measurements, even if

not quantum.

and similarly, on Bob’s side—of “wired” (both classically and quantumly) measurements

on ONR and O corresponds to a two-way LOCC (local operations and classical

communication) measurement on ONR ⊗ O. More in detail, let O = OAB and

ONR = OCD
NR , with AC on Alice’s side, and BD on Bob’s side. Then one has

p′(a′, b′|x′y′) =
∑

a,b,x,y

q(a′, b′, x, y|a, b, x′, y′)p(a, b|x, y) (21)

=
∑

a,b,x,y

TrCD

(

MC
2,a′|a ⊗ND

2,b′|b
(

ΛC
x|x′ ⊗ ΓD

y|y′
[

OCD
NR

])

)

(22)
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× TrAB

(

MA
a|x ⊗NB

b|yO
AB
)

(23)

= Tr

(

(

∑

a,x

ΛC†
x|x′[M

C
2,a′|a]⊗MA

a|x

)

(24)

⊗
(

∑

b,y

ΓD†
y|y′[N

D
2,b′|b]⊗NA

b|y

)

OCD
NR ⊗ OAB

)

(25)

= Tr (M ′CA
a′|x′ ⊗N ′DB

b′|y′ O
CD
NR ⊗OAB) (26)

Here the completely-positive trace-non-increasing maps ΛC
x|x′ (such that

∑

xΛ
C
x|x′ is

trace-preserving for all x′) correspond to the action of measurement M1 (similarly for

the Γ’s and N1). By using their duals ΛC†
x|x′ we defined new local POVM elements

M ′CA
a′|x′ =

∑

a,xΛ
C†
x|x′[MC

2,a′|a] ⊗MA
a|x that can be realized via two-way LOCC between A

and C (similarly on Bob’s side). One concludes that a box ~p that can be realized via

local measurements on some O gets mapped onto a box ~p′ that can be realized via local

measurements on O ⊗ ONR.

Consider then the case where one quantifies a property of boxes in terms of the

underlying (pseudo-)states. Suppose one proves that such a quantifier behaves well—in

particular, that it does not increase—under tensoring the (pseudo-)state with a non-

resource (pseudo-)state; then it is proven that the quantifier behaves meaningfully under

local processes with side non-resources.

We are going to show that this is the case for both rL(~p) = rS(~p) and rQ(~p) = rD(~p)

(remember that these equalities were proven in Proposition 2). By making use of the

unified framework for correlations we will now explicitly argue that rL(~p) behaves well

under local processing with side non-resources. The same kind of argument goes through

for rQ(~p).

Consider an optimal O such that O → ~p and rS(~p) = rS(O). Consider further a

separable σS such that (O+rS(O)σS)/(1+rS(O)) is separable, which exists by definition

of rS(O). A box ~p′ that we can obtain with local processing from ~p using as side non-

resource a separable state τS, can be obtained by measuring locally O ⊗ τS. We have

that

O ⊗ τS + rS(O)σS ⊗ τS
1 + rS(O)

=
O + rS(O)σS
1 + rS(O)

⊗ τS

is separable, because the tensor product of two separable states is separable. We observe

that there might be another ρS such that such that (O⊗τS+ tρS)/(1+ t) is separable for
0 ≤ t ≤ rS(O). Thus, we have that rS(O ⊗ τS) ≤ rS(O) = rS(~p). Since O⊗ τS → ~p′, this

implies rS(~p′) ≤ rS(~p). Thus, local processing with side non-resources does not increase

rL(~p) = rS(~p).

3.5. Alternative characterizations of robustness

We provide here two alternative characterizations of robustness that will apply to our

case.
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Proposition 4. The robustness (8) has the two alternative characterizations

rS(v) =
1

2

(

min

{

∑

i

|ci|
∣

∣

∣

∣

∣

v =
∑

i

ciwi, wi ∈ S,
∑

i

ci = 1

}

− 1

)

(27)

=
1

2

(

max
{

|f(v)|
∣

∣

∣
|f(w)| ≤ 1 ∀w ∈ S

}

− 1
)

, (28)

where in (28) we consider linear real functionals on the real affine space A of which S

is a subset.

Proof. For completeness we will prove (27). A similar proof appears in [16]; in the same

reference the reader will find the less straightforward proof of (28).

That rS(v) is greater than the right-hand side of (27) is clear, because we can write

v = (1 + rS(v))w
+ − rS(v)w

−. On the other hand, consider an optimal decomposition

v =
∑

i ciwi, achieving the minimum on the right-hand side of (27). We can write

v =
∑

i

ciwi

=
∑

ci≥0

ciwi +
∑

ci<0

ciwi

=
∑

ci≥0

|ci|
∑

ci≥0 |ci|wi
∑

ci≥0 |ci|
−
∑

ci<0

|ci|
∑

ci<0 |ci|wi
∑

ci<0 |ci|

=

(

1 +
∑

ci<0

|ci|
)

w+ −
(

∑

ci<0

|ci|
)

w−,

having defined w+ =
∑

ci≥0
|ci|wi

∑
ci≥0

|ci| and w− =
∑

ci<0
|ci|wi

∑
ci<0

|ci| and taken into account that
∑

i ci =
∑

ci≥0 |ci| −
∑

ci<0 |ci| = 1. So, we see that rS(v) ≤
∑

ci<0 |ci| = (
∑

i |ci| − 1)/2.

This implies the following:

rL(~p) = (bL(~p)− 1)/2 (29)

with bL(~p) := min

{

∑

i

|ci|
∣

∣

∣

∣

~p =
∑

i

ci~piL,
~piL ∈ L,

∑

i

ci = 1

}

(30)

= max

{

|BL(~p)|
∣

∣

∣

∣

|BL(~pL)| ≤ 1 ∀~pL ∈ L
}

, (31)

rQ(~p) = (bQ(~p)− 1)/2 (32)

with bQ(~p) := min

{

∑

i

|ci|
∣

∣

∣

∣

∣

~p =
∑

i

ci~piQ,
~piQ ∈ L,

∑

i

ci = 1

}

(33)

= max
{

|BQ(~p)|
∣

∣

∣
|BQ(~pQ)| ≤ 1 ∀~pQ ∈ Q

}

, (34)

rS(O) = (wS(O)− 1)/2 (35)

with wS(O) := min

{

∑

i

|ci|
∣

∣

∣

∣

∣

O =
∑

i

ciσi, σi ∈ S,
∑

i

ci = 1

}

(36)
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= max
{

|Tr(WO)|
∣

∣

∣
|Tr(Wσ)| ≤ 1 ∀σ ∈ S

}

, (37)

rD(O) = (wD(O)− 1)/2 (38)

with wD(O) := min

{

∑

i

|ci|
∣

∣

∣

∣

∣

O =
∑

i

ciρi, ρi ∈ D,
∑

i

ci = 1

}

(39)

= max
{

|Tr(WO)|
∣

∣

∣
|Tr(Wρ)| ≤ 1 ∀ρ ∈ D

}

. (40)

In the above we have used the notation BL/Q(~p) =
∑

a,b,x,yBL/Q(a, b|x, y)p(a, b|x, y),
BL/Q(a, b|x, y) ∈ R, and considered operators W = W †. The functions BL/Q play the

role of Bell parameters/values [2]. The constraint |BL(~pL)| ≤ 1 can be seen as a Bell

inequality [1] bounding classical correlations, with BL(a, b|x, y) the coefficients in the

inequality; |BQ(~pQ)| ≤ 1 can instead be seen as a Tsirelson inequality [3], bounding

quantum correlations. On the other hand, the W ’s play the role of witnesses. The

constraint |Tr(Wσ)| ≤ 1 for all σ ∈ S can be seen as a condition for an entanglement

witness [4], normalized and rescaled differently than usual, as typically it is asked that

Tr(Wσ) ≥ 0 for all σ ∈ S, with potentially Tr(Wρ) < 0 for some entangled state ρ.

The request |Tr(Wρ)| ≤ 1 ∀ρ ∈ D can instead be seen as a condition for a witness of

lack of positivity; also here, the approach is different than usual, as in order to detect

non-positivily one would typically consider W ’s that are positive operators themselves

and check the condition Tr(Wρ) ≥ 0. Notice that because of linearity, we could have

simply used a unified notation based on the notion of inner product (e.g., Tr(WO) is

nothing else than the Hilbert-Schmidt inner product between W and O).

4. Quantifying beyond-quantum correlations in the unified operator

formalism

In the following we will focus on making use of the unified framework for correlations in

the analysis and quantification of correlations beyond quantum. In particular, we will

find alternative expressions for rD(~p) = rQ(~p).

Let us start by introducing some notation. The trace norm of an operator X is

defined as ‖X‖1 := Tr
√
X†X , i.e., as the sum

∑

i σi(X) of all the singular values of X .

If X is Hermitian, X = X† =
∑

i xi|xi〉〈xi|, with xi ∈ R the eigenvalues of X and {|xi〉}
its eigenbasis, then ‖X‖ =

∑

i |xi|.
Given two Hermitian operators X and Y , we define their trace-norm distance as

D(X, Y ) :=
1

2
‖X − Y ‖1,

where we included a normalizing factor 1/2 such that D(ρ, σ) = 1 for orthogonal states

ρ and σ.

Notice that, since TrO = 1 for all (pseudo-)states, (‖O‖1 − 1)/2 corresponds

to the sum of the absolute values of the negative eigenvalues of O. Thus, it is a

clearcut quantifier of how non-positive O is [27]. Similarly minρ∈DD(O, ρ) quantifies

how different from a quantum state O is. We find the following relations, which,
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with the exception of the interpretation in terms of distance, were derived in [27] in a

different context—the quantification of entanglement by means of partial transpositon

and negativity.

Lemma 5. It holds

rD(O) = min
ρ
D(O, ρ) =

‖O‖1 − 1

2
.

Proof. Any Hermitian O =
∑

i oi|oi〉〈oi| admits a Jordan decomposition into its positive

and negative parts, i.e.,

O = O+ − O−, O+ =
∑

oi≥0

oi|oi〉〈oi|, O− =
∑

oi<0

|oi||oi〉〈oi|.

So we can write

O = TrO+ρ+ − TrO−ρ,

with ρ± = O±/TrO±. Notice that from ‖O‖1 = TrO+ + TrO− and TrO+ − TrO− =

TrO = 1 we get TrO+ = 1 + TrO− and TrO− = (‖O‖1 − 1)/2. So rD(O) ≤ TrO− =

(‖O‖1 − 1)/2.

On the other hand, consider an optimal—for the sake of rD(O)—decomposition

O = (1 + rD(O))ρ− rD(O)ρ
′, from which, using the triangle inequality, we find

‖O‖1 = ‖(1 + rD(O))ρ− rD(O)ρ
′‖1

≤ (1 + rD(O))‖ρ‖1 + rD(O)‖ρ′‖1
= 1 + 2rD(O)).

so that, rD(O)) ≤ (‖O‖1 − 1)/2.

Overall, we proved rD(O)) = (‖O‖1 − 1)/2. To prove the remaining claim, observe

that 2D(O, ρ+) = ‖O−ρ+‖1 = ‖O‖1−tr ρ+ = ‖O‖1−1. Observe also that, for any state

ρ, ‖O−ρ‖1 ≥ ‖O‖1−‖ρ‖ = ‖O‖1−1. So, minρD(O, ρ) = D(O, ρ+) = (‖O‖1−1)/2.

Thus, combining Lemma 5 with Proposition 2, we arrive at

Theorem 6. It holds

rD(~p) = rQ(~p) = min
O→~p

min
ρ
D(O, ρ) = min

O→~p

‖O‖1 − 1

2
. (41)

We remark that the rightmost-side-hand of (41) provides a very simple way of

checking that rD(~p) does not increase under local processing with side non-resources.

Indeed, let ~p′ be a box obtained processing ~p with a shared quantum state ρ and local

measurements. Suppose O → ~p, with O optimal for the sake of rD(~p). Then

rD(~p′) = min
O′→~p′

‖O′‖1 − 1

2

≤ ‖O ⊗ ρ‖1 − 1

2

=
‖O ⊗ ‖1‖ρ‖1 − 1

2
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=
‖O‖1 − 1

2
= rD(~p).

The inequality is due to the fact that, as discussed in Section 3.4, we can obtain ~p′ by

measuring locally O ⊗ ρ.

4.1. Beyond quantum violation of Bell inequalities

Suppose that the only information that we have about ~p is that it violates some Bell

inequality beyond the extent allowed by quantum mechanics. Can we bound the “lack of

physicality”—i.e., the violation of positivity—of the underlying pseudo-state with such

knowledge? We can, as follows.

Proposition 7. For any Bell inequality BL is holds

|BL(~p)|/BQmax

L − 1

2
≤ rD(~p), (42)

with BQmax

L = max~pQ∈Q |BL(~pQ)|. Moreover,

bL(~p)/b
Qmax

L − 1

2
≤ rD(~p), (43)

with bQmax

L = max~pQ∈Q bL(~pQ) = maxBL
BQmax

L .

Proof. Let ~p =
∑

i c
Q
i
~piQ be an optimal decomposition of ~p for the sake of rD(~p) = rQ(~p)

according to (32), i.e., rQ(~p) = (
∑

i |cQi | − 1)/2 = (bQ(~p)− 1)/2. Then

|BL(~p)| = |
∑

i

cQi BL(~piQ)| ≤ BQmax

L
∑

i

|cQi | = BQmax

L bQ(~p) (44)

This gives (42); upon maximization over BL of the leftmost and rightmost side of (44)

we obtain (43).

The bound (43) was already presented in [16] in terms of rQ(~p). The bound (42)

is useful when we have information about a specific Bell inequality; a similar bound for

the maximal non-local content qmin
NL was presented in [28].

4.2. Example: noisy Popescu-Rohrilich box

The noisy Popescu-Rohrlich box [29], which depends on a parameter 0 ≤ ǫ ≤ 1/2, is

defined via

pǫ(a, b|x, y) :=
{

1−ǫ
2

if a⊕ b = x · y
ǫ
2

otherwise
,

with a, b, x, y ∈ {0, 1}. For ǫ = 0 we recover the original Popescu-Rohrlich box [9]

p0(a, b|x, y) = pPR(a, b|x, y) = 1/2 δa⊕b,x·y, while for ǫ = 1/2 we have the totally

uncorrelated uniform probability distribution p1/2(a, b|x, y) = prand(a, b|x, y) = 1/4, for

all x, y, a, b. In general, we can write

pǫ(a, b|x, y) = (1− 2ǫ)pPR(a, b|x, y) + 2ǫprand(a, b|x, y).
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It can be easily checked that the noisy Popescu-Rohrlich box is no-signalling for all

0 ≤ ǫ ≤ 1/2. On the other hand, the noisy Popescu-Rohrlich box is known to be not

quantum for 0 ≤ ǫ < (2−
√
2)/4.

In [13] it was shown that the original Pospescu-Rohrlich box can be obtained via

(7) with

OPR :=
1 +

√
2

2
|ψ+〉〈ψ+|+ 1−

√
2

2
|ψ−〉〈ψ−|,

where |ψ±〉 = (|00〉 ± |11〉)/
√
2, and with the local POVMs (actually, projective

measurements) {(1±σx)/2} and {(1±σy)/2} for Alice, and {(1±(σx−σy)/
√
2)/2} and

{(1± (σx + σy)/
√
2)/2} for Bob. One checks that, more in general, he noisy Popescu-

Rohrlich box can be obtained from

Oǫ :=
1 +

√
2(1− 2ǫ)

2
|ψ+〉〈ψ+|+ 1−

√
2(1− 2ǫ)

2
|ψ−〉〈ψ−|, (45)

with the same local projective measurements. The question about OPR that was not

addressed in [13], and that we will answer more in general for Oǫ, is whether these

operators violate the condition of positivity minimally, just enough to realize ~pǫ. We

answer this in the affirmative, making use of the result of Proposition 7. Notice that

the bounds (42) and (43) are bounds on the trace norm of any pseudo-state O such that

O → ~p. More explicitly, they can be cast as

|BL(~p)|/BQmax

L ≤ ‖O‖1 (46)

and

bL(~p)/b
Qmax

L ≤ ‖O‖1,
respectively. As Bell inequality, i.e., function BL, we will use the CHSH inequality [30]

BL,CHSH(~p) =
1

2

1
∑

a,b,x,y=0

(−1)(a⊕b)⊕(x·y)p(a, b|x, y),

where the normalization factor on the right-hand side is chosen so that |BL,CHSH(~pL)| ≤ 1

for all ~pL ∈ L. One finds BL,CHSH(~pǫ) = 2(1−2ǫ), while it is known that BQmax

L,CHSH =
√
2.

Thus, from (46) we find that any O such that O → ~pǫ satisfies ‖O‖1 ≥
√
2(1 − 2ǫ).

On the other hand, Oǫ saturates such a bound, as from (45) one finds exactly

‖Oǫ‖1 =
√
2(1 − 2ǫ), for 0 ≤ ǫ ≤ (2 −

√
2)/4. Notice that the closest physical state to

Oǫ in that range of ǫ is always |ψ+〉〈ψ+|, with Oǫ=(2−
√
2)/4 exactly equal to |ψ+〉〈ψ+|.

5. Conclusions

In this article we have illustrated how the unified framework for no-signalling correlations

introduced in [13] can be used in the quantification of correlations. The key aspect

of the unified framework is that also beyond-quantum correlations have an “almost

quantum” representation: they are still obtained via local quantum measurements, but

the distant parties share pseudo-states, i.e., trace-one Hermitian operators that are not
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necessarily positive semidefinite. This opens up the possibility of, for example, casting

the processing of all no-signalling correlations—including beyond-quantum ones that

are usually represented solely as boxes with inputs/outputs—in terms of the processing

of the underlying (pseudo-)state. Here, with in mind a resource-theory approach, we

have looked at the simple example of local processing with side non-resources (e.g.,

side separable states, when we want to study as a resource correlations arising from

entanglement). It would be interesting to consider the unified operator formalism in

more sophisticated processing scenarios (see [31] and references therein).

The unified framework for correlations also allows one to connect tightly the

quantification of properties of correlations intended in the usual sense of probability

distributions—how non-local, how beyond-quantum—to the quantification of properties

of the underlying operator—how separable, how non-positive. We showed that, when

using the notion of robustness of a certain property, this connection leads actually to

an identification, e.g., the robustness of non-locality is the same as the entanglement

robustness. Such a connection constitutes also a simple approach to the device-

independent quantification of the properties, like entanglement, of the underlying states.

The application and expension of our results to other measures of distinguishability for

operators and probabilities—like relative entropy—will be explored elsewhere.

We focused in particular on the quantification of how beyond-quantum certain

correlations are. We expect this to be useful in the quest to pin down—via

some physical or information-theoretic principle—quantum correlations among all no-

signallng correlations. One provocative way to cast such quest is that of asking how

comes pseudo-states are not allowed. This is particularly relevant in the multipartite

scenario which we have not considered here, as it was proven that there are pseudo-

states that always lead to bona-fide probability distributions, even without constraints

on the allowed measurements [13].

As a natural quantifier of beyond-quantum correlations, we have analyzed the

connection between the beyond-quantum robustness of pseudo-states and of probability

distributions. As already observed in [27], the first coincides with the negativity of the

pseudo-state. As an example of the concepts developed, we have looked at the specific

case of the family of noisy Popescu-Rohrlich boxes, proving the optimality—in terms of

negativity—of the underlying pseudo-state considered in [13] for the case of the perfect

Popescu-Rohrlich box, and here generalized to its noisy version.

Note added. During the completion of this manuscript we became aware of the

related work by De Vicente [31].
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