Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Fast algorithm for rate-based optimal error protection of embedded codes

Stankovic, V. and Hamzaoui, R. and Saupe, D. (2003) Fast algorithm for rate-based optimal error protection of embedded codes. IEEE Transactions on Communications, 51 (11). pp. 1788-1795. ISSN 0090-6778

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Embedded image codes are very sensitive to channel noise because a single bit error can lead to an irreversible loss of synchronization between the encoder and the decoder. P.G. Sherwood and K. Zeger (see IEEE Signal Processing Lett., vol.4, p.191-8, 1997) introduced a powerful system that protects an embedded wavelet image code with a concatenation of a cyclic redundancy check coder for error detection and a rate-compatible punctured convolutional coder for error correction. For such systems, V. Chande and N. Farvardin (see IEEE J. Select. Areas Commun., vol.18, p.850-60, 2000) proposed an unequal error protection strategy that maximizes the expected number of correctly received source bits subject to a target transmission rate. Noting that an optimal strategy protects successive source blocks with the same channel code, we give an algorithm that accelerates the computation of the optimal strategy of Chande and Farvardin by finding an explicit formula for the number of occurrences of the same channel code. Experimental results with two competitive channel coders and a binary symmetric channel showed that the speed-up factor over the approach of Chande and Farvardin ranged from 2.82 to 44.76 for transmission rates between 0.25 and 2 bits per pixel.

Item type: Article
ID code: 5190
Keywords: combined source-channel, coding, convolutional codes error detection codes, image coding, telecommunication channels wavelet transforms, Electrical engineering. Electronics Nuclear engineering, Electrical and Electronic Engineering
Subjects: Technology > Electrical engineering. Electronics Nuclear engineering
Department: Faculty of Engineering > Electronic and Electrical Engineering
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 18 Jan 2008
    Last modified: 04 Sep 2014 15:32
    URI: http://strathprints.strath.ac.uk/id/eprint/5190

    Actions (login required)

    View Item