Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Molecularly imprinted solid-phase extraction of naphthalene sulfonates from water

Caro, E. and Marce, R.M. and Cormack, P.A.G. and Sherrington, D.C. and Borrull, F. (2004) Molecularly imprinted solid-phase extraction of naphthalene sulfonates from water. Journal of Chromatography A, 1047 (2). pp. 175-180. ISSN 0021-9673

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A new polymeric sorbent synthesised by exploiting molecular imprinting technology has been used to selectively extract naphthalene sulfonates (NSs) directly from aqueous samples. In the non-covalent molecular imprinting approach used to prepare this polymer, 1-naphthalene sulfonic acid (1-NS) and 4-vinylpyridine (4-VP) were used as a template molecule and functional monomer, respectively, and both dissolved in a mixture of methanol/water (4:1) as porogen together with the cross-linker ethylene glycol dimethacrylate. The new non-covalent molecularly imprinted polymer (MIP) prepared in aqueous environment was used as a sorbent in solid-phase extraction (SPE) to selectively extract a group of naphthalene mono- and disulfonates. When one litre of a standard aqueous solution, which contained a mixture of eight NSs, was percolated through the SPE cartridge, all the NSs were retained on the MIP because of the cross-reactivity of the polymer. Recoveries were higher than 80% for all the compounds even after a clean-up step with methanol (MeOH). The MIP was also used to analyse water from the Ebro river.