Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

GNSS based passive bistatic radar for micro-doppler based classification of helicopters : experimental validation

Clemente, C. and Parry, T. and Galston, G. and Hammond, P. and Berry, C. and Ilioudis, C. and Gaglione, D. and Soraghan, J. J. (2015) GNSS based passive bistatic radar for micro-doppler based classification of helicopters : experimental validation. In: IEEE International Radar Conference 2015, 2015-05-11 - 2015-05-15.

[img]
Preview
Text (Clemente-etal-RC-2015-passive-bistatic-radar-for-micro-doppler-based-classification-helicopters)
Clemente_etal_RC_2015_passive_bistatic_radar_for_micro_doppler_based_classification_helicopters.pdf - Accepted Author Manuscript

Download (789kB) | Preview

Abstract

The capability of using illuminators of opportunity for target classification is of great interest to the radar community. In particular the alternative use of Global Navigation Satellite System (GNSS) has recently initiated a number of studies that aim to exploit this source of illumination for passive radar. We recently introduced the concept of a GNSS based passive radar for extraction of micro-Doppler signatures from helicopter rotor blades with the aim of identify this kind of targets. In this paper we present the experimental validation of our concept with real data from two different models of helicopter