Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

VSC transmission operating under unbalanced AC conditions - analysis and control design

Xu, L. and Andersen, B. and Cartwright, P. (2005) VSC transmission operating under unbalanced AC conditions - analysis and control design. IEEE Transactions on Power Delivery, 20 (1). pp. 427-434. ISSN 0885-8977

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This work presents an analysis and a new control design of a voltage-source converter (VSC) transmission system operating under unbalanced network conditions. The system is analyzed in the positive and negative synchronous reference frames. The proposed control strategy contains a main controller and an auxiliary controller. The main controller is implemented in the positive d-q frame using decoupling control without involving positive/negative-sequence decomposition. The auxiliary controller is implemented in the negative-sequence d-q frame using cross-coupling control of negative-sequence current. Simulation results using the SIMULINK power system blockset show good performance of the proposed control strategy for a 300-MW 300-kV dc VSC transmission system during both balanced conditions and unbalanced conditions as may be caused by a solid single-phase-to-ground fault.