Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Direct power control of DFIG with constant switching frequency and improved transient performance

Zhi, D. and Xu, L. (2007) Direct power control of DFIG with constant switching frequency and improved transient performance. IEEE Transactions on Energy Conversion, 22 (1). pp. 110-118. ISSN 0885-8969

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper proposes a new direct power control (DPC) strategy for a doubly fed induction generator (DFIG)-based wind turbine system. The required rotor control voltage, which eliminates active and reactive power errors within each fixed time period, is directly calculated based on stator flux, rotor position, and active and reactive powers and their corresponding errors. No extra power or current control loops are required, simplifying the system design, and improving transient performance. Constant converter switching frequency is achieved that eases the design of the power converter and the ac harmonic filter. Rotor voltage limit during transients is investigated, and a scheme is proposed that prioritizes the active and reactive power control such that one remains fully controlled while the error of the other is reduced. The impact of machine parameter variations on system performance is investigated and found negligible. Simulation results for a 2 MW DFIG system demonstrate the effectiveness and robustness of the proposed control strategy during variations of active and reactive power, machine parameters, and wind speed