Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Unified synthesis of tapped-inductor dc-to-dc converters

Williams, Barry W. (2013) Unified synthesis of tapped-inductor dc-to-dc converters. IEEE Transactions on Power Electronics, 29 (10). pp. 5370-5383. ISSN 0885-8993

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Tapped-inductor variations of single-switch, single-diode, dc-to-dc converters are categorized based on a new unified sequential circuit topology and mathematical transformation approach, all seeded from a basic buck-boost converter and its transfer function. Classification focuses on identifying two different ac circuit coupled inductor arrangements of the basic buck-boost dc-to-dc converter. Subsequent dc circuit sequential manipulation yields all 11 known, documented, in theory, in simulation and practically, tapped-inductor dc-to-dc converter topologies. The procedure not only generates sequences of topologies, but also generates the voltage transfer functions without recourse to analysis of the circuit internal operating mechanisms. Consequently, two converter classes group the 11 known tapped-inductor topologies, which is at least one fewer topology classes than universally accepted. The methodology yields two new classes of three and ten coupled inductor converter topologies, all with new transfer functions. The new analysis approach is adaptable to the analysis of all single-switch, single-diode, (noncoupled inductor), dc-to-dc converters (single and two inductor topologies), formulated from the basic buck-boost converter.