Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Dynamic modeling and control of DFIG-based wind turbines ynder unbalanced network conditions

Xu, L. and Wang, Y. (2007) Dynamic modeling and control of DFIG-based wind turbines ynder unbalanced network conditions. IEEE Transactions on Power Systems, 22 (1). pp. 314-323. ISSN 0885-8950

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper presents an analysis and control design of a doubly-fed induction generator (DFIG)-based wind generation system operating under unbalanced network conditions. A DFIG system model in the positive and negative synchronous reference frames is presented. Variations of stator active and reactive powers and generator torque are fully defined in the presence of negative sequence voltage and current. Alternative DFIG control targets during network unbalance, such as reducing stator current unbalance, torque, and power pulsations minimization, are identified. A rotor current control strategy based on positive and negative (dq) reference frames is used to provide precise control of the rotor positive and negative sequence currents. Simulation results using EMTDC/PSCAD are presented for a 2-MW DFIG wind generation system. It shows that conventional vector control of DFIG without considering network unbalance results in excessive oscillations on the stator active/reactive power, electromagnetic torque, and stator/rotor currents even with a small stator voltage unbalance. In contrast, with the proposed control strategy, enhanced system control and operation such as minimizing oscillations in either active power, or electromagnetic torque, or stator or rotor currents can be achieved