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shift suggests that the surface field is influencing the behavior 
of the volume field. The weaker reflection off the back surface 
of the dielectric, compared with when the copper foil is 
present may be expected to produce a lower Q volume mode, 
insufficient to provide the strong synchronization necessary 
for coherent scattering and clear eigenmode formation as 
observed in fig.3. 

 

 
Fig.3 Coherent eigenmode formation due to coupling of surface and volume 
fields in a PSL with lattice period 1.94mm, dielectric thickness 0.8mm, and a 
 .copper foil backing ݉ߤ	35

 
Fig.4 Reflected signal from PSL structures with 0.8mm dielectric substrate 
with no copper foil backing, irradiated at an incident angle of 30°.  The red 
and blue plots correspond to lattice periods of 1.74mm and 1.94mm 
respectively. 3 resonances can be identified in each case. 

 
For the set of 1.6mm samples the resonances are less well-

defined and not as constrained, possibly due to absorptive 
losses within the dielectric and also the capability of the 
thicker dielectric waveguide to become over-moded. The plot 
provided in fig.5 demonstrates less coherent eigenmode 
formation for a 1.6mm thick sample with lattice period 
1.94mm and copper backing.  Around 150 GHz a resonance 
(~-10dB) is observed, similar to that shown in fig.3.  In this 
case other effects are also present and the volume and surface 
modes are not tied down to one particular frequency.  

For all the structures, the exact position of the resonances is 
dependent on the angle of irradiation. Fig. 5 shows the 
variation of frequency with angle.  For the 150 GHz resonance 
the frequency shifts up with increasing angle.  However, for 
the resonance observed around 210 GHz, the opposite is true. 

Extending the work in this paper will involve studying PSLs 
at higher frequencies.  New samples are being designed to 

operate within the 325-500 GHz band. Numerical modelling is 
being carried out to further understand the coupling of volume 

 
Fig.5 Reflected signal from 1.6mm structure with lattice period 1.94mm and 
copper foil for various angles of irradiation.  The green, purple, orange and 
red plots correspond to incident angles of 40°, 35°, 30° and 25° respectively. 
 

and surface modes at the lattice interface and the effect of 
varying dielectric and lattice parameters.  Using CST 
Microwave Studio, a single unit cell is irradiated by plane 
waves over a range of angles and the scattering parameters are 
measured by a “Floquet” port.  An alternative approach 
involves modelling a small section of the structure to provide 
a more realistic representation of the experiment by taking into 
account phenomena such as edge effects. All the PSLs 
considered are scalable and these concepts are applicable to a 
broad range of frequencies including THz and infrared.  

III. SUMMARY 

The coupling between volume and surface modes and 
coherent eigenmode formation in PSL structures has been 
successfully demonstrated.  It has been shown that the 
parameters of these structures must be carefully chosen to 
facilitate the resonant coupling of modes.  When the necessary 
conditions are met, these structures can provide an interaction 
region for novel, coherent sources of radiation.   

ACKNOWLEDGEMENTS 

Amy J. MacLachlan and A. R. Phipps thank the EPSRC for 
supporting their postgraduate studentships. 

REFERENCES 

[1]. N. S. Ginzburg, N. Y. Peskov, A. S. Sergeev, et al. , “Theory of free-
electron maser with two-dimensional feedback driven by an annular electron 
beam”, J. Appl. Phys., 92, pp. 1619-1629, 2002.  
[2]. I. V. Konoplev, A. W. Cross, A. D. R. Phelps, et al., “Experimental and 
theoretical studies of a coaxial free-electron maser based on two-dimensional 
distributed feedback”, Phys. Rev. E, 76, (5), 056406, 2007. 
[3]. I. V. Konoplev, L. Fisher, A.W. Cross, et al., “Surface wave Cherenkov 
maser based on a periodic lattice”, Appl. Phys. Lett., 96, 261101, 2010. 
[4]. I. V. Konoplev, A. J. MacLachlan, C. W. Robertson, et al., “Cylindrical, 
periodic surface lattice – Theory, dispersion analysis and experiment”, Appl. 
Phys. Lett., 101, 121111, 2012. 
[5]. I. V. Konoplev, A. J. MacLachlan, C. W. Robertson, et al., “Cylindrical 
periodic surface lattice as a metadielectric: concept of a surface-field 
Cherenkov source of coherent radiation”, Phys. Rev. A, 84, 013826, 2011. 
[6]. I. V. Konoplev, A. W. Cross, P. MacInnes, et al., “High-current oversized 
annular electron beam formation for high-power microwave research”, Appl. 
Phys. Lett., 89, 171503, 2006. 
[7]. H. Yin, G. R. M. Robb, W. He, et al., “Pseudospark-based electron beam 
and Cherenkov maser experiments”, Phys. Plasmas, 7, pp. 5195-5205, 2000.  

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00
140 160 180 200 220

Re
fle

ct
ed

 p
ow

er
 (d

B)

Frequency (GHz)

1 2

3
1

2

3

-30.00
-29.00
-28.00
-27.00
-26.00
-25.00
-24.00
-23.00
-22.00
-21.00
-20.00

140 160 180 200 220

Re
fle

ct
ed

 p
ow

er
 (d

B)

Frequency (GHz)

-36.00

-34.00

-32.00

-30.00

-28.00

-26.00

-24.00

-22.00

-20.00
140 160 180 200 220

Re
fle

ct
ed

 p
ow

er
 (d

B)

Frequency (GHz)

Alan
Typewritten Text
2




