Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Transient supramolecular reconfiguration of peptide nanostructures using ultrasound

Pappas, Charalampos G. and Mutasa, Tapiwa and Frederix, Pim W. J. M. and Fleming, Scott and Bia, Shuo and Debnath, Sisir and Kelly, Sharon M. and Gachagan, Anthony and Ulijn, Rein V. (2015) Transient supramolecular reconfiguration of peptide nanostructures using ultrasound. Materials Horizons, 2 (2). pp. 198-202.

[img] PDF (Pappas-etal-MH2015-supermolecular-reconfiguration-ultrasound)
Pappas_etal_MH2015_supermolecular_reconfiguration_ultrasound.pdf - Accepted Author Manuscript

Download (467kB)

Abstract

Ultrasound, i.e. high frequency oscillating pressure waves, is commonly used to overcome kinetic barriers associated with dissolution, assembly and gelation.We demonstrate that ultrasound energy may also be used to achieve transient reorganization of supramolecular nanostructures, which revert back to the original state when sound is switched off. Aromatic peptide amphiphiles, Fmoc-FL and -YL were used to study the transient acoustic response. These systems showed temporary supramolecular transitions that were sequence dependent. The changes observed were due to an altered balance between H-bonding and p-stacking, giving rise in changes in chiral organisation of peptide building blocks. Transient reconfiguration was visualized by TEM and changes in supramolecular interactions characterized by fluorescence, FT-IR and CD. Remarkably, significant differences are observed when compared to thermal heating, which shows relates to the oscillating and directional characteristics of ultrasound when delivering heat to a system.