Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Reduction of mathematical models of signal transduction networks: Simulation-based approach applied to EGF receptor signalling

Conzelmann, H. and Saez-Rodriguez, J. and Sauter, T. and Bullinger, E. and Allgöwer, F. and Gilles, E.D. (2004) Reduction of mathematical models of signal transduction networks: Simulation-based approach applied to EGF receptor signalling. IET Systems Biology, 1 (1). pp. 159-169. ISSN 1751-8849

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Biological systems and, in particular, cellular signal transduction pathways are characterised by their high complexity. Mathematical models describing these processes might be of great help to gain qualitative and, most importantly, quantitative knowledge about such complex systems. However, a detailed mathematical description of these systems leads to nearly unmanageably large models, especially when combining models of different signalling pathways to study cross-talk phenomena. Therefore, simplification of models becomes very important. Different methods are available for model reduction of biological models. Importantly, most of the common model reduction methods cannot be applied to cellular signal transduction pathways. Using as an example the epidermal growth factor (EGF) signalling pathway, we discuss how quantitative methods like system analysis and simulation studies can help to suitably reduce models and additionally give new insights into the signal transmission and processing of the cell.