Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Adaptive high bandwidth current control for induction machines

Telford, D. and Dunnigan, M. and Williams, B.W. (2003) Adaptive high bandwidth current control for induction machines. IEEE Transactions on Power Electronics, 18 (2). pp. 527-538. ISSN 0885-8993

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

For high performance induction machine control, the technique of indirect rotor flux oriented vector control is commonly utilized. The torque performance of this technique is significantly affected by the performance of the current control loops. In this paper a new adaptive high bandwidth current controller for induction machines is presented. The technique is derived and validated through simulation and experimental results. The new architecture is shown to achieve a dead-beat response, with a rise time of one sample period and no overshoot, when the inverter voltage limit is not exceeded. When the voltage limit is exceeded the current response is achieved in a minimum time with no overshoot. It is shown that the new control technique achieves similar dynamic response to the conventional dead-beat control scheme while eliminating parameter sensitivity issues. It is demonstrated that the new algorithm offers higher bandwidth than the commonly used synchronous frame proportional plus integral control technique while maintaining good steady state performance.