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We study non-equilibrium spatial self-organisation in
cold atomic gases, where long-range spatial order
spontaneously emerges from fluctuations in the plane
transverse to the propagation axis of a single optical
beam. The self-organisation process can be interpreted
as a synchronisation transition in a fully connected
network of fictitious oscillators, and described in
terms of the Kuramoto model.

1. Introduction
In recent years, cold and ultracold matter have proved
to be a formidable tool for the investigation of phase
transitions and collective behaviour in non-equilibrium
systems. When coupling the dynamics of light and the
center-of-mass degrees of freedom of laser-cooled atoms,
the dynamics becomes nonlinear and, above a critical
value for the energy injected into the system, a transition
is observed from a spatially homogeneous state to a
state displaying some form of long-range order. This
can be obtained in various configurations: transversally
pumped cavities [1] where collective dynamics and self-
organisation in cold [2,3] and ultracold [4] gases have
been investigated; collective atomic recoil lasing (CARL)
where the spontaneous generation of a back-scattered
beam within a monodirectional cavity is self-sustained
by atomic bunching in the resulting optical potential [5–
7]; in a counter-propagating geometry superradiance
and high-order nonlinearities stemming from atomic
bunching have been studied [8–10]. The spontaneous
breaking of a continuous translational symmetry in the
presence of a strong viscous damping was investigated
both for cavity [11,12] and counter-propagating [10,13,14]
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geometries, while a single-mirror geometry in the absence of damping was the focus of recent
theoretical [15] and experimental [16] research. The distinguishing feature of these studies is that
the spatial scale of the emerging spatial structure is self-selected, so that the spontaneous breaking
of two continuous symmetries is observed (rotations and translations in the plane). A fully
connected network is implemented through effective long range interactions mediated by the
optical fields, so that a mean-field model effectively captures the dynamics of the system [11,15].
The same general concept lies at the heart of much recent research, ranging from the atom-optical
simulation of condensed matter phenomena [1] to the the study of spin-glass transitions in cold
atoms [17].

Together with spatial self-ordering, another prominent feature of nonlinear systems is that of
temporal spontaneous ordering, i.e. synchronisation. The emergence of synchronisation is a
pervasive feature of nonlinear science, ranging from biology and chemistry to neuroscience and
social networks [18]. Broadly speaking, the spatial ordering into a periodic structure and the
synchronisation of oscillators on a limit cycle can be thought of as the same phenomenon, if the
extended nature of the spatial coordinate is ignored, and only the spatial phase is considered.
Implementing light-mediated atom-atom interactions opens the possibility for tunable and
controllable realisations of long-range interacting and mean-field models for synchronisation [19],
and indeed this was exploited in Refs. [7,20] to connect the viscous CARL dynamics to the
Kuramoto model for synchronisation of coupled oscillators [21]. We will show in the following
that this connection is not limited to CARL, but applies also to the symmetry-breaking transverse
instabilities studied in [15,16]. Moreover, the connection made in [7,20] referred to the case where
strong damping is present in the system (hence the denomination ‘viscous’ CARL), which in the
Kuramoto analogy translates into the case where the oscillators have zero natural frequencies
(their distribution is a Dirac delta function). We extend here the Kuramoto analogy to the
situation analysed in [15,16], where no damping is present and a finite spread exists in the natural
frequency distribution of the fictitious oscillators.

2. Single-mirror optomechanical instabilities

(a) Basic scheme
We consider the single-mirror setup [22] depicted in Fig. 1, where a cold gas of two-level atoms
is illuminated from the side by a pump beam of amplitude F , frequency ω0 and wavenumber k0.
The pump beam is detuned by δ= ω0 − ωat from the atomic transition (frequency ωat, linewidth
Γ ), and is retroreflected by a mirror of reflectivityR placed at distance d from the cloud to form the
backward beam (amplitudeB). We can thus envisage a situation where fluctuations in the atomic
spatial properties can modify the refractive index distribution in the atomic ensemble and in turn
the phase profile of the field. These phase fluctuations are converted into amplitude fluctuations
by the free-space propagation to the mirror and back (related to the Talbot effect [23]) [24,25].
If the medium is nonlinear, it will react to these amplitude perturbations resulting in a runaway,
self-organisation process where initial fluctuations are exponentially amplified and a macroscopic
structure, emerging from noise, is encoded in the spatial properties of the atomic cloud. These
spatial perturbations can be in the internal states of the atoms, e.g. a change of population
of the excited state (electronic or two-level nonlinearity) or Zeeman sublevel (optical pumping
nonlinearity) or in the external degrees of freedom of the atoms. In particular we are interested
here in the centre of mass, motional degrees of freedom of the atoms, which can be excited by
dipole forces. As was first established for dielectric beads [26–28], linear Rayleigh scatterers can
exhibit a significant optomechanical nonlinearity: for a negative polarisability (corresponding
to δ > 0 for atoms), the dielectric scatterers are low-field seekers and are expelled from high
intensity regions. Since for δ > 0 the refractive index of atoms is smaller than one, a decrease in
atomic density implies an increase of refractive index. Hence the refractive index increases where
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Figure 1: Sketch of the single-mirror setup. A pump beam with an intensity corresponding to
a saturation parameter p0 = |F |2, frequency ω0 and wavenumber k0 illuminates a dense cloud
of cold 87Rb (temperature T , optical density in line centre b0). The beam is phase-shifted and
transmitted from the cloud, and then retroreflected as the backward (B) beam after propagation
to the mirror (distance d, reflectivity R) and back.

the intensity is high, leading to an effective self-focusing nonlinearity. The result is a transverse
optomechanical instability.

(b) Basic experimental observations
In the experiments motivating our study [16] the D2 line of 87Rb is exploited (transition
wavelength λ0 = 780.27nm) with an excited state lifetime of Γ−1 = 26ns. An atomic ensemble
is laser-cooled in a magneto-optical trap (MOT) to a temperature of about 290 µK. At this
temperature Doppler broadening is negligible compared to the linewidth of the atomic transition
(Γ/(2π) = 6.06 MHz). The cold sample obtained has a roughly Gaussian density profile
with dimensions (full-width-at-half-maximum, FWHM) of 10× 10× 5 mm (10mm along the
propagation direction) and contains about 5× 1010 atoms. The optical density in line centre is
b0 = 150. Then the MOT (trapping lasers and magnetic field) is shut down and the pump beam is
turned on for a duration tpump. This pump beam is spatially filtered by a single-mode fibre and
collimated to a spot size of 1.9mm (FWHM). The experiment is performed in the vicinity of the
F = 2→ F ′ = 3 hyperfine transition, which is closed. A repumper tuned to the F = 1→ F ′ = 2

transition counteracts hyperfine pumping due to the residual excitation of other states. The
polarisation of the pump beam is linear. Details of the setup can be found in [16].
Spontaneous breaking of transverse symmetries and pattern formation are observed for a wide
range of positive detunings to the F = 2→ F ′ = 3 transition, most experiments being done with a
pump detuning in the range δ= 7− 10Γ . The observed patterns have hexagonal symmetry and
consist of well developed peaks. As we are going to compare the results to a one-dimensional
theory, we are presenting here only cross-sections of the two-dimensional structures. The upper
panel of Fig. 2 shows a section through the light pattern in the pump beam. A high modulation is
evident with peaks reaching 3.5 times the background of the input beam. The pattern wavelength
is about 110µm and is found to depend on the feedback distance [16].
Ten microseconds after the pump beam is switched off, a weak probe beam, which is orthogonally
polarised to the pump and does not experience feedback, is injected into the medium. It is detuned
a few linewidths to the low-frequency side of the resonance and shows a honeycomb pattern. For
the dispersive imaging situation used here, one expects that high intensity levels are obtained
where the refractive index in the sample is high. For negative detunings these are the regions with
a high atomic density. The observation of honeycombs is hence consistent with the expectation
for complementary patterns in the light field and the atomic density: atoms are expelled from the
pump filament and gather along the ridges of the honeycomb pattern.
Within ten microseconds, all excited state populations created by the pump will have decayed.
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Figure 2: Cross-sections of typical hexagonal patterns observed in the transmitted pump beam
(upper panel) and probe beam (lower panel). Both stem from the re-imaged intensity distribution
10 mm after the cloud (i.e. corresponding to the reentrant backward beam) and are normalized to
the input intensity without atoms. Parameters for the pump beam: I = 129mW/cm2, δ=+7 Γ ,
and d= 5 mm; for the probe beam δ=−7 Γ .

Hence the presence of a structure a few microseconds after the pump beam is switched off
excludes electronic excitation as the source of the atomic grating evidenced by the probe. As other
measurements exclude hyperfine and Zeeman gratings [16], we conclude on the presence of a
significant density grating in the atomic cloud. This can be further substantiated by investigating
the dependence of the contrast of the probe pattern on the delay time between pump and probe
pulse. The result is shown in Fig. 3, which gives a decay time of around 80 µs (corresponding to
a decrease of the contrast by a factor of two). As an atom with a 1D thermal speed of 0.17m/s
would traverse 55µm (half the transverse period) in about 300µs, this is a reasonable order of
magnitude for a wash-out of a density pattern due to the velocity spread of the ensemble. This
will be explored further in the theoretical section.

3. Theoretical model
The analysis of the experimental results is somewhat complicated by the fact that in general
electronic and optomechanical nonlinearities are simultaneously present, so that an internal-
state and a density pattern can be simultaneously present in the atomic ensemble. Internal-state
nonlinear effects can be accounted for in our theoretical model [16] but we will neglect them here
by assuming low saturation values, since at low temperatures a spatial instability is expected to
occur even at low saturation levels due to density redistribution effects only [15]. The results
presented in [16] provide experimental support for this claim in the appropriate parameter
regimes.

For a theoretical treatment, we consider in the following the case of a cigar-shaped cloud
elongated along the coordinate x transverse to the propagation direction z, so that transverse
self-organisation will lead to one-dimensional structures. Our theoretical analysis [15] indicates
in fact that no qualitative differences are expected for the dynamics of one and two-dimensional
systems, and restricting to one dimension allows for a connection with temporal synchronisation
phenomena. We neglect propagation inside the cloud and account for diffraction of the
transmitted field only in the free-space propagation to the mirror and back. For the parameters

Page 4 of 11

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

5

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

0 50 100 150 200 250
0.0

0.5

1.0

no
rm

al
iz

ed
 p

ro
be

 c
on

tra
st

probe - pump delay ( s)

Figure 3: Decay of the density pattern (as measured by the probe) as the delay between pump
(duration 215 µs) and probe (duration 10 µs) pulses is increased. Other parameters are pump
detuning +7Γ , probe detuning +5Γ , pump power 6.6mW, probe power 20µW. Pump and probe
are circularly polarised. The contrast is normalised to the contrast just after the pump switch-off.

considered here, this simplifying assumption provides good qualitative agreement with more
detailed models in which diffraction within the medium is also taken into consideration, as
discussed in [16]. We also assume the pump to be substantially detuned from the atomic
resonance, so that that the atoms act as linear scatterers and the transmitted field Ftr at the exit of
the cloud is:

Ftr(x, t) = F exp (iχ0n(x, t)) (3.1)

where χ0 = b0∆/(1 + 4∆2) parametrizes the cloud susceptibility and ∆= δ/Γ . Scaling of the
field is chosen so that p0 ≡ |F |2 = Ipump

Isat(1+4∆2)
denotes the off-resonance saturation parameter of

the pump, where Ipump is the pump intensity and Isat is the on-resonance saturation intensity
(Isat = 1.6− 3.6mWcm−2 for the D2 line of 87Rb, depending on the exact excitation conditions).
In the limit of large number of atoms N (N ∼ 1010 in a typical experiment) we describe the
cloud dynamics in terms of a phase-space distribution f(x, v, t), where v is the transverse velocity
coordinate, so that the atomic density is obtained as

n(x, t) =

∫+∞

−∞
dv f(x, v, t) .

As the gas is cooled to relatively low temperatures, T ∼ 100µK, optical forces become relevant
for the centre-of-mass dynamics of the gas. In particular, at large detuning radiation pressure
is reduced and the atoms are subject to the conservative dipole potential Udip = 1

2ℏδ log(1 +
s(x, t))≃ 1

2ℏδs(x, t), where the last approximation has been taken by assuming the saturation
parameter associated with the total intensity illuminating the gas to be small, s= |F |2 + |B|2 =
(1+R)Ipump

Isat(1+4∆2)
≪ 1. At the low temperatures under consideration collisions are negligible and the

dynamics of the gas is captured by the Vlasov equation:

∂f

∂t
+ v

∂f

∂x
+

fdip
M

· ∂f
∂v

= 0 , (3.2)

where fdip =−∂Udip/∂x is the dipole force and M is the atomic mass. The feedback loop is then
closed via diffraction in vacuum described in Fourier space by

B(q) =
√
Reidq

2/k0Ftr(q) . (3.3)

The phasor in Eq. (3.3) describes the conversion of phase fluctuations (imprinted on the
transmitted fields via Eq. (3.1)) into amplitude fluctuations by the free-space propagation to the
mirror and back. These amplitude modulations in the optical profile result in dipole forces which

Page 5 of 11

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

6

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

consequently act on the atoms and drive the instability.
The coupled light-atom dynamics described above (without internal-state dynamics) is predicted
to lead to a self-organising transition when the injected power exceeds a critical value, p0 ≥
pth0 = (2Rσχ0)

−1, where σ= ℏδ/2kBT measures the strength of dipole forces relative to thermal
effects [15]. The spatial scale Λc = 2π/qc is set by the critical (most unstable) wavenumber
qc =

√
πk0/2d, and can be continuously tuned through the mirror distance d. As qc is selected

among a continuum of wavenumbers, the self-structuring mechanism discussed here leads to the
spontaneous breaking of a continuous translational symmetry (see Figs. 4c and 4d). Moreover,
in two dimensions the rotational symmetry is also broken [16]. This aspect fundamentally
differentiates the optomechanical self-structuring investigated here from other self-organising
systems involving optomechanics and cold atoms, such as CARL [6,7] and transversely pumped
cavities [1–4], as the spatial scale of the emerging structures is not predetermined by the
geometrical setup or interference conditions.

4. Synchronisation dynamics and connection with the Kuramoto
model

We now discuss the connection between the optomechanical spatial instabilities discussed above
and the Kuramoto model for synchronisation. As a starting point, we remark that the spontaneous
emergence of a periodic pattern (identified by a single spatial frequency qc) can always be
interpreted in terms of a synchronisation transition. Focusing on the phase θ= qcx instead of
the spatial coordinate x itself, the bunching of the atoms in the minima of the self-organising
optical potential corresponds to the transition from a homogeneous state where the atoms have
a uniformly distributed phase to a state where the distribution of the phases is peaked around
a certain value ψ. It is convenient in the following to exploit the periodicity of the pattern
and confine the phase in the range (−π, π) as θj = mod(qcxj , 2π)− π. This connection between
spatial and temporal self-organisation was exploited, for instance, in showing that the spatial
instability of viscous CARL can be interpreted in terms of the Kuramoto model [7,20]. Similar
results also hold for ‘viscous’ single-mirror instabilities (see [11,12] for a cavity analogue), but
we wish to focus our attention here on the inviscid regime in connection with the experimental
results presented in [16].

In order to describe the dynamics of the N atoms composing the gas we consider the 2N coupled
equations (j = 1, . . . , N )

ẋj = vj v̇j =
fdip(xj)

M
=− ℏδ

2M

∂|B|2

∂x

∣∣∣∣
xj

,

where the force is given by the dipole force fdip =−∂Udip/∂x as above. Since the pump intensity
is assumed to be spatially homogeneous, the optical gradients are due only to the backward field
modulations. We now obtain an approximate expression for the backward field valid when the
system is driven just above the threshold for self-organisation. Close to the critical point, a spatial
modulation for the atomic density is obtained at the critical wavenumber, n(x) = 1 + r cos(ψ −
qcx). As the system is translationally invariant, the phase ψ of the pattern is self-selected by the
system (see also [20]). The amplitude r and the phase ψ of the pattern define the Fourier mode of
the density at the critical wavenumber:

reiψ =
1

L

∫L
0
n(x) exp (iqcx) dx , (4.1)

so that r acts as an order parameter for the instability. In line with the CARL literature, we refer to
r as the bunching factor. We stress that while the density spectral properties are directly accessible
in numerical simulations, this is not the case in the experimental realisations. A definition
analogous to the bunching factor, but based on the Fourier properties of the optical fields, was
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termed contrast in Ref. [16] and used to experimentally monitor the self-organising dynamics. The
same procedure was also used in Fig. 3. In the following we will typically assume that the system
is close to the critical point, so that 0< r≪ 1. The critical wavenumber is selected by the system
as the one that most efficiently converts phase modulations in the pump beam into amplitude
modulations for the backward beam [22]. This implies that the far-field sideband at the critical
wavenumber is shifted by a factor eiπ/2 = i in the propagation to the mirror and back, so that B
is obtained from the transmitted field as (see Eq. (3.3)):

Ftr ≃
√
p0e

iχ0 {1 + iχ0r cos(ψ − qcx)}=⇒B =
√
Rp0e

iχ0 {1− χ0r cos(ψ − qcx)} .

To first order in r, the dipole force is thus found as

fdip
M

=− ℏδ
2M

∂|B|2

∂x
≃ ℏδ
M
Rp0χ0qcr sin(ψ − qcx)≡ Jqcr sin(qcx− ψ) , (4.2)

where in the last step we defined J = ℏδ
MRp0χ0.

In order to obtain a connection with models for temporal synchronisation, we now wish to use
Eq. (4.2) to obtain a single set of N equations for the phases θj = qcxj . Close to the critical point,
the modulation depth of the optical potential is small (r≪ 1) and the dynamical behaviour of the
atoms is force-free in first approximation. This is correct up to a certain time t∗, which we term as
dephasing time, and has the following interpretation: close to the critical point, the atoms can move
freely in the emerging optical potential without affecting the dynamics. This is strictly correct only
in the limit of vanishing modulations, r→ 0 (i.e. below threshold), but we exploit critical slowing
down at the onset of the instability to assume that no feedback on the optical field is exerted by
the atomic motion for a characteristic time defined by t∗ = (qcvth)

−1. This definition is chosen as
the time an atom at the thermal speed needs to travel the characteristic distance of the pattern,
Λc ∼ q−1

c . The equation for the frequencies Ωj = qcvj is then solved up to t∗ as

Ωj(t
∗)≃Ωj(0) + Jq2c r sin(θj − ψ)t∗ ,

where Ωj(0) denotes the ‘natural’ frequencies Ωj(0) = qcvj(0) determined by the initial atomic
velocities. The phases then evolve as

θ̇j =Ωj(0) +
J

vth
qcr sin(θj − ψ) . (4.3)

Eq. (4.3) is in the form of a Kuramoto equation [21], with a coupling strength K = Jqc/vth. We
remark that in Eq. (4.3) an effective long-range interaction between the ‘oscillators’ (i.e. the atoms)
is mediated by the light field, which thus offers the possibility of implementing a mean-field
model with all-to-all coupling in a simple and powerful way.
With a Lorentzian initial condition for the natural frequencies Ωj(0), the Kuramoto model (4.3)
is known to lead to a synchronisation transition when the driving exceeds the critical value
K ≥Kth = 2Ωth = 2qcvth [21]. Hence we recover the power threshold obtained in [15] and
reported above: pth0 = (2Rσχ0)

−1. As discussed in [15], with a Gaussian initial condition a slightly
different growth rate is found for the instability, but the threshold condition is unchanged. Since
the synchronisation transition leads to a bunching of the fictitious oscillators around the (self-
selected) phase ψ, in the x-space this corresponds to the formation of complementary periodic
structures ∼ cos(qcx− ψ) for the atomic density and the optical intensity. We remark that the
sign of the optical potential is positive for blue detuning (δ > 0) and negative for red detuning
(δ < 0), so that when δ > 0 the density and optical profiles are shifted by half a wavelength
(see Figs. 2 and 4). The onset of the optomechanical instability can thus be reinterpreted as a
Kuramoto transition to a synchronised state with a self-selected phase ψ where the threshold for
this process is determined by the initial spread of the oscillator frequencies. Physically, this spread
is determined by the initial temperature of the gas and is therefore tunable experimentally, while
the coupling strength K is tunable through the injected pump p0.
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Figure 4: Numerical simulations of the synchronisation dynamics. Fig. a shows the evolution of
the bunching factor r, displaying the spontaneous emergence of a macroscopically ordered state
after ∼ 1ms followed by oscillations of the order parameter. Figs. b, c and d show snapshots of the
dynamics taken after 1ms (b), 1.5ms (c) and 2ms (d). In each of these panels we show the intensity
profile s(x) (top left), the density profile n(x) (bottom left), and the discrete sampling (N = 105

particles) of the phase probability distribution as a function of θ= mod(qcx, 2π)− π in both a
linear (bottom right) and polar (top right) plot. In the bottom right panel of Figs. b-d, the black
dashed line indicates the uniform probability value 1

2π . Parameters are: δ=+15Γ , T = 300µK,
b0 = 100, d= 5mm and R= 1. The injected pump is p0 = 0.043 (5% above threshold). A movie
displaying the dynamics of the system for a pump duration of 5ms has also been submitted as
electronic supplementary material.

We numerically solved the coupled dynamics (3.1-3.2) of the phase-space distribution f(x, v, t)

and the optical field in one transverse dimension using a semi-Lagrangian method with spline
interpolation [15]. The initial condition of the gas is set to be a Lorentzian distribution with
full-width-at-half-maximum vth: f0(v) = vth/[π(v

2 + v2th)]. Our numerical results confirm the
theoretical predictions reported in the previous Sections since above threshold a spatially
homogeneous cloud is spontaneously converted into a periodic pattern with periodicity Λc =

2π/qc. Driving the system 5% above threshold, we monitor the bunching parameter r and observe
a transition from a r= 0 state to a state characterised by r > 0, followed by oscillations with a
period of about Tslosh ≃ 800µs, see Fig. 4a. This is analogous to what is observed in inviscid
CARL [29], and is due to the atoms sloshing and periodically amplifying in the spontaneously
formed optical potential. Fig. 4b, 4c and 4d show the formation of complementary periodic
spatial structures for the optical intensity s(x) and the atomic density n(x). The spatial scale
of the pattern is Λc ≃ 120µm for our choice of parameters, and is in good agreement with the
experimental observations [16]. The depth of the modulated potential shown in Fig. 4d in units
of temperature is Tpot ≈ ℏδ(smax−smin)

kB
≈ 440µK, where smax and smin are the maximum and
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Figure 5: Numerical results for the dephasing dynamics. The upper left panel (a) shows the
distribution function for a pump duration of 5ms, obtained for the same parameters as Fig. 4.
The pump is subsequently switched off and the atomic cloud state is monitored after 100µs (b)
and 500ms (c). The bunching factor decreases monotonically with a characteristic dephasing time
of the order of 100µs (d).

minimum values of s respectively and kB is the Boltzmann constant. For each of these states we
calculate the probability distribution of the phase θ by sampling the density distribution n(θ)

with N = 105 particles, which shows a peak around the value ψ≃ π/2 in correspondence with
the synchronisation transition.
Fig. 5 shows the dynamics of the pattern obtained for the same parameters as Fig. 4 when the
injected pump is switched off after 5ms. As the system is left with no driving (K = 0), the ballistic
motion of the atoms leads to a dephasing dynamics in which the bunching factor r decreases
monotonically, see Fig. 5d. The phase space distribution f(x, v) is monitored just before switching
off the pump (Fig. 5a), and then after 100µs (Fig. 5b) and 500µs (Fig. 5c). The characteristic
dephasing time can be inferred from Fig. 5d, and is in the order of 100µs. This is consistent with
the timescale of atomic motion at the considered temperature, and agrees with our experimental
results, see Fig. 3.

5. Conclusion
Self-structuring of the atomic density in a cloud of a cold atomic gas that is optically pumped
can be interpreted as a transition to a synchronised state of Kuramoto oscillators. Although this
connection was made in cases where strong damping is present [7,20], we have shown that the
analogy can be extended to cases where no damping is present such as those of the experimental
realisation in [16]. In this case a finite spread exists in the natural frequency distribution of the
fictitious oscillators, which sets the threshold for the synchronisation transition.
We note that a similar coupling between the optical field and the motion of atoms can also arise
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in the context of cooperative scattering of light by an optically thick cloud of atoms [30]. It is
possible to derive the optical forces acting on each atom in an ensemble of N atoms including
both the quasi-resonant radiation pressure (dominant close to the atomic resonance) as well as
the optical dipole forces (more relevant for larger detuning) [31]. In contrast to the situation
considered in this article, in [30,31] these forces arise from direct dipole-dipole coupling between
atoms and are not mediated via a propagation and feedback through a mirror. Furthermore, we
expect that synchronisation between different atoms not only manifests itself in the motional
degrees of freedom, but can also affect the internal degrees of freedom of the atoms, leading
to synchronised cooperative scattering of a large cloud. Such cooperative scattering has been
investigated in pioneering work by R. Dicke for samples smaller than the wavelength but also
for ‘radiation of gas of large extent’ [31].
Finally, it is important to mention that our theoretical and numerical predictions of the Kuramoto
analogy for inviscid systems can be applied outside the interaction of light with cold atoms.
For example it is possible to connect cold atoms and plasmas via the correspondence between
dipole and ponderomotive forces. Attractive (shadow) and repulsive (radiation pressure)
forces exist inside magneto-optically trapped samples, which introduce an effective charge
between the atoms and thus simulate electrostatic interactions. Self-structuring and its Kuramoto
interpretation are then to be expected in the investigation of various plasma systems without
friction, possibly including quantum plasmas.
In the context of the special issue, it is important to mention that optomechanical solitons
were predicted in single-pass propagation [13] and cavity schemes [12] with velocity damping.
Corresponding structures are expected for the single-mirror geometry.
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