Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Graph-based depth video denoising and event detection for sleep monitoring

Yang, Cheng and Mao, Yu and Cheung, Gene and Stankovic, V. and Chan, K. (2014) Graph-based depth video denoising and event detection for sleep monitoring. In: 2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP). IEEE. ISBN 9781479958962

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Quality of sleep greatly affects a person's physiological well-being. Traditional sleep monitoring systems are expensive in cost and intrusive enough that they disturb the natural sleep of clinical patients. In our previous work, we proposed a non-intrusive sleep monitoring system to first record depth video in real-time, then offline analyze recorded depth data to track a patient's chest and abdomen movements over time. Detection of abnormal breathing is then interpreted as episodes of apnoea or hypopnoea. Leveraging on recent advances in graph signal processing (GSP), in this paper we propose two new additions to further improve our sleep monitoring system. First, temporal denoising is performed using a block motion vector smoothness prior expressed in the graph-signal domain, so that unwanted temporal flickering can be removed. Second, a graph-based event classification scheme is proposed, so that detection of apnoea / hypopnoea can be performed accurately and robustly. Experimental results show first that graph-based temporal denoising scheme outperforms an implementation of temporal median filter in terms of flicker removal. Second, we show that our graph-based event classification scheme is noticeably more robust to errors in training data than two conventional implementations of support vector machine (SVM).