Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Upper limb movement analysis via marker tracking with a single-camera system

Yang, Cheng and Kerr, Andy and Stankovic, Vladimir and Stankovic, Lina and Rowe, Philip (2014) Upper limb movement analysis via marker tracking with a single-camera system. In: 2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2285 - 2289. ISBN 9781479957514

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Optical motion capture systems have been widely adopted for human motion analysis in stroke rehabilitation because of real-time processing and high-accuracy features. However, these systems require a large laboratory space and multiple cameras and thus can be expensive and not transportable. In this paper, we propose a portable, cheap, single-camera motion analysis system to implement upper limb movement analysis. The proposed system consists of video acquisition, camera calibration, marker tracking, autonomous joint angle calculation, visualization, validation and classification. The validation with a state-of-the-art optical motion analysis system using Bland-Altman plot, a typical clinical measure, indicates that the proposed system can accurately capture elbow movement, trunk-tilt, and shoulder movement for diagnosis. Furthermore, the volunteers are explicitly classified into healthy and stroke groups via a support vector machine trained on statistics of the trunk-tilt and shoulder movement. Experimental results show that the proposed system can accurately capture the upper limb movement patterns, automatically classify stroke survivors using ordinal scale classification of upper limb impairment, and offer a convenient and inexpensive solution for upper limb movement analysis.