Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A low-complexity energy disaggregation method : performance and robustness

Altrabalsi, Hana and Liao, Jing and Stankovic, Lina and Stankovic, Vladimir (2014) A low-complexity energy disaggregation method : performance and robustness. In: 2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG). IEEE, Piscataway, NJ., pp. 1-8.

[img] PDF (Altrabalsi-etal-CIASG2014-low-complexity-energy-disaggregation-method)
Altrabalsi_etal_CIASG2014_low_complexity_energy_disaggregation_method.pdf - Accepted Author Manuscript

Download (138kB)


Disaggregating total household's energy data down to individual appliances via non-intrusive appliance load monitoring (NALM) has generated renewed interest with ongoing or planned large-scale smart meter deployments worldwide. Of special interest are NALM algorithms that are of low complexity and operate in near real time, supporting emerging applications such as in-home displays, remote appliance scheduling and home automation, and use low sampling rates data from commercial smart meters. NALM methods, based on Hidden Markov Model (HMM) and its variations, have become the state of the art due to their high performance, but suffer from high computational cost. In this paper, we develop an alternative approach based on support vector machine (SVM) and k-means, where k-means is used to reduce the SVM training set size by identifying only the representative subset of the original dataset for the SVM training. The resulting scheme outperforms individual k-means and SVM classifiers and shows competitive performance to the state-of-the-art HMM-based NALM method with up to 45 times lower execution time (including training and testing).