Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A low-complexity energy disaggregation method : performance and robustness

Altrabalsi, Hana and Liao, Jing and Stankovic, Lina and Stankovic, Vladimir (2014) A low-complexity energy disaggregation method : performance and robustness. In: 2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG). IEEE, Piscataway, NJ., pp. 1-8.

[img] PDF (Altrabalsi-etal-CIASG2014-low-complexity-energy-disaggregation-method)
Altrabalsi_etal_CIASG2014_low_complexity_energy_disaggregation_method.pdf - Accepted Author Manuscript

Download (138kB)

Abstract

Disaggregating total household's energy data down to individual appliances via non-intrusive appliance load monitoring (NALM) has generated renewed interest with ongoing or planned large-scale smart meter deployments worldwide. Of special interest are NALM algorithms that are of low complexity and operate in near real time, supporting emerging applications such as in-home displays, remote appliance scheduling and home automation, and use low sampling rates data from commercial smart meters. NALM methods, based on Hidden Markov Model (HMM) and its variations, have become the state of the art due to their high performance, but suffer from high computational cost. In this paper, we develop an alternative approach based on support vector machine (SVM) and k-means, where k-means is used to reduce the SVM training set size by identifying only the representative subset of the original dataset for the SVM training. The resulting scheme outperforms individual k-means and SVM classifiers and shows competitive performance to the state-of-the-art HMM-based NALM method with up to 45 times lower execution time (including training and testing).